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[ABSTRACT]: Supergeometry is a natural extension of the theory of differ-

ential geometry, which enjoys values on its own right as a purely mathematical

object, and also turns out to be useful in physics: it gives a model of spacetime

that unifies quantum science and gravity, the string theory. The first part of this

thesis gives a detailed and mathematically strict introduction to supergeome-

try, rearranged from the lecture notes by Covolo and Poncin[1], the paper of

Leites[2] and the notes by Deligne and Morgan[3]. The second part focuses on

an explicit discussion on the important example SMan(R0|δ, X) and outlines a

corresponding proof of the Chern-Gauss-Bonnet theorem, following Berwick-

Evans’ work[4].
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1. An Introduction to Supergeometry

1.1 A Short Introduction of Superalgebra

Before entering into the geometry part, we give a crash course to preliminary superal-
gebra.

Roughly speaking, superalgebra is Z2-graded algebra. We shall establish the notions
following the usual order in abstract algebra, that is, we start from ring and then proceed to
algebra and module.

Definition 1.1.1 (Superring). A superringR is aZ2-graded ring, i.e., a (usually non-commutative)
unitary ring with a decomposition as abelian groups R = R0 ⊕ R1, where 0, 1 ∈ Z2, such
that RiRj ⊂ Ri+j for any i, j ∈ Z2.

Elements in R0 are said to be homogeneous with even parity and those in R1 are said to
be homogeneous with odd parity. The assignment of parity gives a function

p : (R0 ∪R1) \ {0} → Z2.

The requirement that RiRj ⊂ Ri+j is equivalent to demanding that the parity is additive
under multiplication, i.e.,

p(ab) = p(a) + p(b),

for any homogeneous a, b ∈ R. Note that 0 ∈ R can be seen to have both even and odd
parities and that the multiplicative unit 1 ∈ R is forced to have even parity since p(1) =

p(1 · 1) = 2p(1) = 0. Similar convention of the parity applies to objects that are Z2-graded,
as we will see soon.

A superring R is supercommutative if for any homogeneous a, b ∈ R there is

ab = (−1)p(a)p(b)ba. (1.1.1)

It follows that, in a supercommutative superring, two odd elements anticommute with each
other and are nilpotent, i.e., ab = −ba and a2 = 0 for any odd elements a and b. Usually we
refer to supercommutative superring with one “super” omitted, i.e., by saying supercommu-
tative ring or commutative superring.

Example 1.1.1. Noticing that every ring R can be graded trivially by putting R0 := R, we
see that every ring can be viewed as a superring. To ask for a ring to be commutative is the
same thing as to ask for a trivially graded ring to be supercommutative. In this point of view,
notions in superalgebra are natural generalizations of those in classical abstract algebra, and
things that are not “super” are seen to be graded trivially by default.
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Example 1.1.2. Given a smoothmanifoldX , the algebra of smooth formsΩ•(X) = Ω•
0(X)⊕

Ω•
1(X) is a supercommutative ring, where

Ω•
0(X) :=

⊕
n≥0

Ω2n(X), Ω•
1(X) :=

⊕
n≥0

Ω2n+1(X).

Onewill see thatΩ•(X) is in fact a supercommutativeR-algebra, once the definition is given.

Remark 1.1.1 (Koszul Sign Rule). Usually we will consider only supercommutative objects.
The principle of adding a sign up to the parity when switching the position of two adjacent
objects is known as the Koszul sign rule; for superrings it is eq. (1.1.1). We will see that it
appears everywhere in supergeometry.

For the reason in the above remark, one can assume safely that every superring is su-
percommutative from now on.

When building the category of superrings, it is natural to ask for a forgetful functor from
this category to Ring. Due to the requirement of supercommutativity of the multiplicative
structure, it is pointless to consider ring homomorphisms that does not preserve the parity.
Hence

Definition 1.1.2 (Superring Homomorphism). Let R and R′ be two superrings. A superring
homomorphism ϕ : R → R′ is a ring homomorphism ϕ from R to R′ that preserves the
parity, i.e., ϕ(Ri) ⊂ R′

i for each i ∈ Z2.

We denote the category of supercommutative rings as SRing.
Recall that an algebra over a commutative ring K, K-algebra, is a ring A along with a

ring homomorphism ϕ : K → A such that ϕ(K) ⊂ Z(A) where Z(A) is the multiplicative
center of A. Adding the word “super” before each single word, we obtain the notion of
superalgebra.

Definition 1.1.3 (Superalgebra). A superalgebra over a supercommutative ring R, super R-
algebra, is a superringA alongwith a superring homomorphismϕ : R → A such thatϕ(R) ⊂
Z(A)whereZ(A) is the supercenter ofA, i.e., the sub-superring generated by {a ∈ A0∪A1 |
ab = (−1)p(a)p(b)ba, ∀b ∈ A0 ∪ A1} the set of homogeneous elements that super-commute
with all homogeneous elements in A.

LetA andB be two superR-algebras. Morphisms fromA toB are superringmorphisms
from A to B such that the following triangle commutes:

A B

R

The category of supercommutative R-algebras, i.e., super R-algebras that are supercommu-
tative as superrings, is denoted as R-SAlg.
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Definition 1.1.4 (Supermodule). A supermodule M over a superring R = R0 ⊕ R1, super
R-module, is a (left)R-module (R seen as a ring) with a Z2-graded structureM =M0⊕M1

(direct sum as abelian groups), such that the multiplication by scalars respects the parity, i.e.,
RiMj ⊂Mi+j for any i, j ∈ Z2.

Equivalently, RiMj ⊂Mi+j is the same as that

p(rm) = p(r) + p(m)

for any homogeneous r ∈ R andm ∈M .

Example 1.1.3. A superring is a supermodule over itself.

When it comes to the contexts where supercommutativity is always assumed, the leftA-
module structure gives rise to a rightR-module structure, defined bymr := (−1)p(r)p(m)rm.

Remark 1.1.2. Roughly speaking, the induced right R-module structure allows writing the
scalars on both sides. This will save a lot of efforts when we put multiple supermodules over
a supercommutative ring together via the tensor product.

For the special case where R = k is a (trivially graded) field, we obtain the notion of
super vector space.

Definition 1.1.5 (Super Vector Space). A super vector space V over k (usually with charac-
teristic 0) is a Z2-graded k-vector space, i.e., a vector space with a direct sum decomposition
(as vector spaces) V = V0 ⊕ V1. If V0 and V1 have dimension p and q respectively, then V is
said to have dimension p|q.

Similar to the classical context, we may consider a supermoduleM over a superring A
which at the same time is a superR-algebra, thenM has a natural structure of a supermodule
over R. More specifically, if R is a field, then M has a natural structure of a super vector
space over R.

One needs to be careful when talking about morphisms between supermodules. Of
course the family of morphisms that preserve the parity is a natural choice.

Definition 1.1.6 (Supermodule Homomorphism). A supermodule homomorphism f from
M to N two super R-modules is a R-module homomorphism that preserves the parity, i.e.,
f(Mi) ⊂ Ni for any i ∈ Z2.

These are the morphisms in the categoryR - SMod of superR-modules. Without further
specification, a morphism always preserves the parity.

However, it makes sense in practice to consider parity-reversingmorphisms between su-
permodules, and their linear combinationswith parity-preserving ones. The parity-preserving
ones are said to be homogeneous with even parity and the parity-reversing ones are said to
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be homogeneous with odd parity. According to the Koszul sign rule, instead of the usual
R-linearity, we demand the super R-linearity, i.e., for a group homomorphism f : M → N

to be a homogeneous morphism of super R-modules, there should be

f(rm) = (−1)p(f)p(r)rf(m) (1.1.2)

for any m ∈ M and homogeneous r ∈ R. This is compatible with the induced right R-
module structure, i.e., we have f(mr) = f(m)r, as one can easily verify. Formally,

Definition 1.1.7 (Homogeneous Morphism of Supermodules). Let M , N be two super R-
modules and f ∈ HomAb(M,N). The map f is

• an even morphism if f(Mi) ⊂ Ni for any i ∈ Z2 and f(rm) = rf(m) for anym ∈M

and r ∈ R.

• an odd morphism if f(Mi) ⊂ Ni+1 for any i ∈ Z2 and f(rm) = (−1)p(r)rf(m) for
anym ∈M and homogeneous r ∈ R.

The set of all even morphisms from M to N is denoted as Hom0(M,N) and the set
of all odd ones is denoted as Hom1(M,N). The assignment of the parity gives a func-
tion (Hom0(M,N) ∪ Hom1(M,N)) \ {0} → Z2, and one sees that the convention of su-
per R-linearity in eq. (1.1.2) fits the definition. Also, note that there is Hom0(M,N) =

HomR - SMod(M,N).
The direct sum as abelian groups gives the internal Hom set

Hom(M,N) := Hom0(M,N)⊕Hom1(M,N).

When R is supercommutative, Hom(M,N) has a natural super R-module structure where
the addition and scalar multiplication are defined point-wisely.

When R is trivially graded, the super R-linearity is the same as the usual R-linearity,
and it is easy to see that Hom(M,N) = HomR -Mod(M,N) in this case. In particular, for
super k-vector spacesM and N we have Hom(M,N) = HomVectk(M,N).

The notations End(M,N) and Aut(M,N) are defined similarly.

1.2 Basics of Supermanifolds

The local model for supermanifolds is the smooth superdomain:

Definition 1.2.1 (Smooth Superdomain). A smooth superdomain Up|q = (U,C∞
p|q) of dimen-

sion p|q is an open subset U of Rp endowed with a sheaf C∞
p|q defined for each open subset

V ⊂ U by
C∞
p|q(V ) := C∞(V )[ξ1, · · · , ξq],
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where C∞(V )[ξ1, · · · , ξq] is the exterior algebra generated by ξ1, · · · , ξq over C∞(V ), i.e.,
the freeC∞(V )-algebra generated by ξ1, · · · , ξq modulo the relation that ξ’s are anticommu-
tative, and the restrictionmaps are induced by the restriction of functionsC∞(V ) → C∞(W )

for anyW ⊂ V . C∞
p|q(V ) is a supercommutative ring by setting ξ1, · · · , ξq to be odd.

Definition 1.2.2 (Supermanifold). A supermanifold M = (M,O) of dimension p|q is a
ringed space whose underlying space M is a manifold and structural sheaf O is a sheaf
of super R-algebras, such that the pair is locally R-isomorphic to smooth superdomains of
dimension p|q, i.e., for any point ofM there exists a neighborhoodW of that point such that
there exists a homeomorphism ϕ : W ∼= U ⊂ Rp along with an isomorphism ϕ∗ : C∞

p|q
∼=

ϕ∗O|W of sheaves of super R-algebras.

Example 1.2.1. A classical differential manifold of dimension n is a supermanifold of di-
mension n|0 when it is endowed with the sheaf C∞ of smooth functions.

Example 1.2.2 (The Parity-reversed Tangent Bundle πTX). For an ordinary smooth man-
ifold X , we can consider the supermanifold πTX := (X,Ω•), the parity-reversed tangent
bundle, where 1-forms in Ω•(X) are set to be odd. Clearly, if X is of dimension n, then
πTX is of dimension n|n.

With slight abuse of notation, for a supermanifold M = (M,O) we usually write
C∞(M) := O(M).

In analogy to the classical theory, we call (W,O|W ) ∼= Up|q = (U, (x, ξ)) a (super) coor-
dinate neighborhood with super coordinates (x, ξ) = (x1, · · · , xp, ξ1, · · · , ξq) ∈ C∞

p|q(U) =

C∞(U)[ξ1, · · · , ξq], where xi : U ⊂ Rp → R : (a1, · · · , ap) 7→ ai is the usual coordinate
function.

Definition 1.2.3 (Morphism of Supermanifolds). Let (M,O) and (N,R) be two superman-
ifolds. A morphism Ψ = (ψ, ψ∗) from (M,O) to (N,R) consists of

• a continuous map between the underlying spaces ψ : M → N ,

• a morphism of sheaves of super R-algebras ψ∗ : R → ψ∗O.

Morphisms of supermanifolds compose in the obvious way, giving rise to the category
of supermanifolds, SMan.

Example 1.2.3 (The SuperspaceRp|q). Given a domainU ⊂ Rp alongwith a diffeomorphism
ϕ : U ∼= Rp, it induces an isomorphism of supermanifolds

Up|q = (U,C∞
p|q)

∼= (Rp, C∞
p|q) =: Rp|q

via ϕ∗ : C∞(Rp) ∼= C∞(U). Since every neighborhood in Rp contains a neighborhood of
coordinate ball which is diffeomorphic toRp, replacing smooth superdomain with the super-
space Rp|q in definition 1.2.2 gives exactly the same definition of supermanifold.
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More generally, diffeomorphisms between underlying spaces of smooth superdomains
of dimension p|q induce isomorphisms of superdomains.

Example 1.2.4 (The Point pt). It is easy to see that the point pt := R0|0 is final in the category
SMan. This makes the definition of categorical group objects applicable to SMan, giving the
definition of super Lie groups.

Example 1.2.5 (Open Subsupermanifold). Let M = (M,O) be a supermanifold. For any
open subset U ⊂ M , U := (U,O|U) gives an open sub-supermanifold of M, with the
inclusion morphism given by U ↪→M and the restriction of sheaves O → O|U .

To establish a deeper understanding of morphisms of supermanifolds, we need to know
what the super version of local ring is.

Definition 1.2.4 (Homogeneous Ideal). A homogeneous ideal I of a superring R is an ideal
I of the ring R such that I = (I ∩ R0) ⊕ (I ∩ R1), i.e., the homogeneous components of
each element of I still live in I .

Since we require morphisms between superrings to preserve the parity, it is clear that the
inverse image of a homogeneous ideal under amorphism of superrings is also a homogeneous
ideal.

Definition 1.2.5 (Local Superring). A superring R = R0 ⊕ R1 is local if it admits a unique
maximal homogeneous ideal, i.e., it has only one homogeneous ideal that is maximal with
respect to the inclusion.

A superalgebra is local if it is local as a superring. For a supermanifoldM = (M,O),
the stalk Ox = C∞

p|q,x of the structural sheaf at a point x ∈ U ⊂ M is local, with the
unique maximal homogeneous idealmx consisting of all the non-units. More concretely, for
f ∈ C∞

p|q(V ) we may write it as

f(x, ξ) =
∑
α

fα(x)ξ
α =

q∑
l=0

∑
α1<···<αl

fα1···αl(x)ξ
α1 · · · ξαl

= f0(x) +

q∑
l=1

∑
α1<···<αl

fα1···αl(x)ξ
α1 · · · ξαl ,

with the coefficients fα’s living in C∞(V ). A monomial term fα1···αl(x)ξ
α1 · · · ξαl is said to

have cohomological degree l. Since the part with nonzero cohomological degrees

q∑
l=1

∑
α1<···<αl

fα1···αl(x)ξ
α1 · · · ξαl

is nilpotent, for any x ∈ V the germ [f ]x is a non-unit if and only if f0(x) = 0, consequently
the homogeneous components of a non-unit are also non-units. Hence
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Theorem 1.2.1 (The Unique Maximal Homogeneous Ideal). The unique maximal homoge-
neous ideal of the stalk C∞

p|q,x is given by

mx = {[f ]x | f0(x) = 0}. (1.2.1)

□

With the above result, the residue field κ(x) = C∞
p|q,x/mx is identified with R via the

isomorphism [f ]x 7→ f0(x). In classical theory, quotient bymx is essentially the same as for-
getting the difference in infinitesimal neighborhoods around x, which yields the evaluation
at x. Given f ∈ O(V ) for any open V ⊂ M and let x ∈ V varies, this observation induces
a real-valued function on V which is locally (f |U)0 ∈ C∞(U) in coordinate neighborhoods
U . By claiming that these induced real-valued functions are smooth, a smooth structure on
M is defined; the compatibility of restriction maps (which are super R-algebra morphisms)
ensures that this smooth structure is well-defined. The continuous map ψ in definition 1.2.3
turns out to be smooth under this structure, as we will see later. Consequently, for two super-
manifolds to be isomorphic, they must have the same dimension and their underlying spaces
endowed with the induced smooth structure must be diffeomorphic.

The above discussion gives a morphism of super R-algebras

εV : O(V ) −→ C∞(V )

f 7−→ εV (f) : εV (f)(x) := f0(x)

Let V vary and it is easy to see that εV is natural in V , giving a morphism of sheaves

ε : O → C∞.

This gives an inclusion morphism (M,C∞) → M.
Note that though for a smooth superdomainUp|q we have simplyC∞(U) ⊂ C∞

p|q(U), the
above ε does not necessarily admit a canonical right inverseC∞ → O, due to the complexity
of the global nature. A choice of C∞ → O always exists though, giving the existence of
restrictionsM → (M,C∞); it is a consequence of the following theorem by Batchelor[5]:

Theorem1.2.2 (Batchelor’s theorem). Every supermanifold is isomorphic to (M,Γ(∧•(E∨)))

for some ordinary smooth finite-rank vector bundle E overM . □

It is natural to ask for a morphism between supermanifolds to descend to a morphism
between their underlying smooth manifolds. We have seen that the structural sheaf of a su-
permanifold descends naturally to the structural sheaf of the underlying smooth manifold via
ε, so the question is that whether this way of descending is compatible with the morphisms.
The answer is yes.
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From the above we know that the image of a superfunction f ∈ O(V ) in the residue
field κ(x) = R can be seen as the “evaluation” of f at a point x ∈ M , and ε is induced
by this “evaluation”. A morphism Ψ = (ψ, ψ∗) : M = (M,O) → N = (N,R) induces a
map on stalks ψ∗

x : Rψ(x) → Ox, and for it to be compatible with the “evaluation”, the only
requirement is that it induces an isomorphism on the residue fields,

R = κ(ψ(x)) = Rψ(x)/mψ(x)
∼= Ox/mx = κ(x) = R,

which is equivalent to that ψ∗
x preserves the maximal homogeneous ideal, i.e., ψ∗

x(mψ(x)) ⊂
mx. This is not included by definition 1.2.3, but it is automatically satisfied according to the
following proposition.

Proposition 1.2.3. LetA andB be two local superR-algebras such thatA/mA
∼= B/mB

∼=
R. If f : A→ B is a morphism of super R-algebras, then f(mA) ⊂ mB.

Proof. Since f is an R-algebra morphism, the composition

R → A
f−−→ B → B/mB

∼= R

is the identity on R where the arrows are the obvious ones. Hence g := A
f−−→ B →

B/mB
∼= R is surjective. This tells that ker g = mA. Therefore

f(mA) = f(ker g) ⊂ ker(B → B/mB
∼= R) = mB

as desired.

With the residue field preserved, for any open subset V ⊂ N ,ψ∗ : R(V ) → O(ψ−1(V ))

induces a morphism ψ̃∗ : C∞(V ) → C∞(ψ−1(V )) such that the following diagram is com-
mutative:

R(V ) O(ψ−1(V ))

C∞(V ) C∞(ψ−1(V ))

εV

ψ∗

εψ−1(V )

ψ̃∗

By evaluating the image of functions under ψ̃∗ at each point x ∈ ψ−1(V ), one sees that ψ̃∗

coincides with the precomposition by ψ : M → N , concluding that ψ is smooth under the
induced smooth structure.

In fact, one can verify that ε is equal to the quotient by the nilpotent ideal, i.e., the ideal
generated by all nilpotent elements, so the existence of ψ̃∗ is rather trivial. However, one
cannot see the fact that ψ̃∗ is the precomposition by ψ, unless one looks at the germs.
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For a classical smooth manifold M , a smooth map f : M → U ⊂ Rr is determined
by the components fi ∈ C∞(M) such that f(p) = (f1(p), · · · , fr(p)) for any p ∈ M . To
give such components is equivalent to determining the pullbacks yi 7→ fi ∈ C∞(M) of
the coordinate functions y1, · · · , yr ∈ C∞(U); conversely, every assignment yi 7→ fi such
that Im(f1, · · · , fr) ⊂ U gives a unique smooth map f : M → U . The analogy holds for
supermanifolds, which is known as the Fundamental Theorem of Supermorphisms.

Before stating and proving the theorem, the technique of Approximation by Polynomial
should be established. Let M = (M,O) be a supermanifold of dimension p|q as always.
Let x0 ∈ M be any point and choose a coordinate neighborhood Up|q = (U,C∞

p|q) of x0.
By translation, we can assume that x0 = 0 in U for conciseness. For a smooth function
f0 ∈ C∞(U) to vanish at x0 = 0, there must be f0(x) ∼ O(x) := O(‖x‖) near 0 by the
Taylor approximation. Hence we can rewrite eq. (1.2.1) as

mx0 =

{
[f ]x0=0

∣∣∣∣ f(x, ξ) = O(x) +

q∑
l=1

∑
α1<···<αl

fα1···αl(x)ξ
α1 · · · ξαl

}
.

It follows that for k ≥ 1,

mk
x0

=

{
[f ]x0=0

∣∣∣∣ f(x, ξ) = k−1∑
l=0

∑
α1<···<αl

O(xk−l)ξα1 · · · ξαl

+

q∑
l=k

∑
α1<···<αl

fα1···αl(x)ξ
α1 · · · ξαl

}
,

where O(xs) := O(‖x‖s) and
∑q

l=k is zero if k ≥ q. In particular,

mq+1
x0

=

{
[f ]x0=0

∣∣∣∣ f(x, ξ) = O(xq+1) +
∑
i

O(xq)ξi + · · ·+O(x)ξ1 · · · ξq
}
, (1.2.2)

which concludes that

Lemma 1.2.4. Let M = (M,O) be a supermanifold of dimension p|q, x0 ∈ U ⊂ M and
f ∈ O(U). If [f ]x′ ∈ mq+1

x′ for a dense set of x′ in some neighborhood of x0 ∈ M , then
[f ]x0 = 0. □

In particular, if f, g ∈ O(V ) satisfy [f − g]x ∈ mq+1
x for any x ∈ V , then f = g.

Theorem 1.2.5 (Approximation by Polynomial). Let (M,O) be a supermanifold of dimen-
sion p|q, x0 ∈ M be an arbitrary point and f ∈ O(V ) be a section of a neighborhood
V of x0. For any fixed degree of approximation k ∈ N∗, there exists a coordinate neigh-
borhood (U,C∞

p|q) of x0 with super coordinates (x, ξ) and a polynomial P = P (x, ξ) ∈
R[x1, · · · , xp, ξ1, · · · , ξq] ⊂ C∞

p|q(U), such that

[f ]x0 − [P ]x0 ∈ mk
x0
.
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Proof. By translation we may assume that x0 = 0 ∈ U . Restrict f to C∞
p|q(V ∩ U) so that

we can write f =
∑

α fα(x)ξ
α. Using the Taylor approximation, we can find a polynomial

Pα such that
fα(x) = Pα(x) +O(xk)

for each α. It follows that

f =
∑
α

fαξ
α =

∑
α

Pα(x)ξ
α +

∑
α

O(xk)ξα.

Since
∑

αO(x
k)ξα ∈ mk

x0
, put P :=

∑
α Pα(x)ξ

α and we are done.

Roughly speaking, theorem 1.2.5 is the super version of Taylor approximation, where
mk
x0
serves as O(‖x− x0‖k). The larger the k grows, the closer the approximation is.
Note that under the requirement that ψ∗ : C∞

p|q(U) → O(M) is a morphism of super
R-algebras, the values of ψ∗ on polynomials is determined by its values on the super coor-
dinates x1, · · · , xp, ξ1, · · · , ξq ∈ C∞

p|q(U). Theorem 1.2.5 along with lemma 1.2.4 implies
that ψ∗ is completely determined by its values on the super coordinates as a consequence of
ψ∗(mq+1

ψ(x)) = ψ∗(mψ(x))
q+1 ⊂ mq+1

x . Conversely, for any parity-preserving assignment of
values on super coordinates such that the induced smooth mapM → U is well-defined with
image contained byU , there exists a corresponding morphism of supermanifoldsM → Up|q.
Formally,

Theorem 1.2.6 (Fundamental Theorem of Supermorphisms). Let M = (M,O) be a su-
permanifold of dimension p′|q′ and Up|q be a smooth superdomain of dimension p|q. If
(s, σ) = (s1, · · · , sp, σ1, · · · , σq) is a (p+ q)-tuple of superfunctions in O(M) such that

• s1, · · · , sp are homogeneous with even parity and σ1, · · · , σq are odd,

• Im(εMs1, · · · , εMsp) ⊂ U ,

then there exists a unique morphism of supermanifolds Ψ = (ψ, ψ∗) : M → Up|q such that

si = ψ∗yi and σj = ψ∗ηj (1.2.3)

for each 1 ≤ i ≤ p and 1 ≤ j ≤ q, where (y, η) are the super coordinates of Up|q.

Proof. The uniqueness is easy. Note that for any morphism (ψ, ψ∗) satisfying eq. (1.2.3),
there must be ψ = (εMs1, · · · , εMsp) since

yi ◦ ψ = ψ̃∗(yi) = εMψ
∗yi = εMsi.

Hence given any two morphisms (ψ1, ψ
∗
1) and (ψ2, ψ

∗
2) satisfying eq. (1.2.3), there is ψ1 =

ψ2 =: ψ. For any V ⊂ U , f ∈ C∞
p|q(V ) and x0 ∈ ψ−1(V ), write y0 := ψ(x0) and by
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theorem 1.2.5 there exists a polynomial Px0 = Px0(y, η) ∈ C∞
p|q(U) labeled by x0 such that

[f ]y0 − [Px0 ]y0 ∈ mq′+1
y0

. Apply ψ∗
i and we obtain

[ψ∗
i (f)]x0 − [ψ∗

i (Px0)]x0 ∈ ψ∗
i (m

q′+1
y0

) ⊂ mq′+1
x0

, i = 1, 2.

Since ψ∗
1(Px0) = ψ∗

2(Px0),

[ψ∗
1(f)− ψ∗

2(f)]x0 = ([ψ∗
1(f)]x0 − [ψ∗

1(Px0)]x0)− ([ψ∗
2(f)]x0 − [ψ∗

2(Px0)]x0) ∈ mq′+1
x0

.

Let x0 ∈ ψ−1(V ) vary and we see by lemma 1.2.4 that ψ∗
1(f) = ψ∗

2(f), concluding ψ∗
1 = ψ∗

2 .
For the existence, we putψ := (εMs1, · · · , εMsp) : M → U and then constructψ∗ : C∞

p|q(V ) →
O(ψ−1(V )) for any open set V ⊂ U .

The superfunction si, restricted to ψ−1(V ), can be decomposed as

si = εsi + ni,

where ni := si − εsi is the nilpotent part of si. For any superfunction f = f(y, η) =∑
α fα(y)η

α ∈ C∞
p|q(V ), under eq. (1.2.3) there must be

ψ∗(f) =
∑
α

ψ∗(fα(y))(ψ
∗η)α =

∑
α

ψ∗(fα(y))σ
α,

so it remains only to determine ψ∗(fα(y)) for each α. Intuitively, one would like that there is
ψ∗(fα(y)) = fα(ψ

∗y) = fα(s) = fα ◦ s. However, si’s may not be real-valued. The remedy
to this situation is to use the trick of formal Taylor expansion, substituting s = εs + n :=

(εs1, · · · , εsp) + (n1, · · · , np) into T (f ; εs), obtaining

ψ∗(fα(y)) = fα(s) = fα(εs+ n) :=
∑
β

1

β!
(∂βy fα)(εs)n

β =
∑
β

1

β!
((∂βy fα) ◦ εs)(x)nβ.

Note that nβ is well-defined as ni’s, being even, commute with each other. Thus we conclude
that the defining formula for ψ∗ is

ψ∗(f) =
∑
α

∑
β

1

β!
(∂βy fα)(εs)n

βσα.

This defining formula works well. The sums are finite due to nilpotency. Since ni’s are
even, ψ∗ defined in this way is parity-preserving. (∂βy fα)(εs) = ((∂βy fα) ◦ εs)(x) is smooth
in x, hence the coefficients are legal. Since the Taylor expansion commutes with addition
and multiplication, ψ∗ is indeed a morphism of super R-algebras. The verification that ψ∗

does satisfy eq. (1.2.3) is straightforward. Finally, the just-proved uniqueness forces that this
definition of ψ∗ is compatible with the restriction maps, giving a well-defined morphism of
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sheaves of super R-algebras and hence a morphism of supermanifolds.

Note that in the proof of theorem 1.2.6, the way of “evaluating” a smooth function at a
“super point” is essentially the same as the way one generalizes a real analytic function to a
holomorphic function on the complex plane using Taylor expansion.

Locally, a supermorphism (ψ, ψ∗) : M → N is a super R-algebra morphism

ψ∗ : C∞(V )[η1, · · · , ηq′ ] → C∞(U)[ξ1, · · · , ξq]

under coordinate neighborhoods Up|q = (U, (x, ξ)) in M and Vp′|q′ = (V, (y, η)) in N with
U ⊂ ψ−1(V ). Committing the usual abuse of notation in classical theory, we write locally
that

yi = ψ∗yi = si(x, ξ) = yi(x, ξ) (even),

ηj = ψ∗ηjσj(x, ξ) = ηj(x, ξ) (odd).
(1.2.4)

The Fundamental Theorem asserts that the local representations determine the supermor-
phism completely.

With the convention of “evaluating” smooth functions at “super points”, the local be-
haviour of morphisms between supermanifolds is completely similar to those between ordi-
nary manifolds, i.e., ψ∗f(y, η) = f(y(x, ξ), η(x, ξ)). Intuitively, this tells how the imaginary
coordinates (the ξ’s and η’s) serve as coordinates.

Example 1.2.6. With the above notations, let (ψ, ψ∗) : R1|2 → R1|1 be defined by

y = y(x, ξ) = x+ ξ1ξ2,

η = η(x, ξ) = f(x)ξ1 + g(x)ξ2,

for some f, g ∈ C∞(R). We have

ψ∗ sin y = sin(x+ ξ1ξ2) = sinx+ (cosx)ξ1ξ2,

ψ∗ cos y = cos(x+ ξ1ξ2) = cosx− (sinx)ξ1ξ2,

ψ∗(sin y cos y) = sinx cosx+ (cos2 x− sin2 x)ξ1ξ2.

Remark 1.2.1. In the decomposition s = εs+ n, writing n = ξ + η, it is not hard to see that

∑
β

1

β!
(∂βy f)(εs) · (ξ + η)β =

∑
γ,α

1

γ! · α!
(∂α+γy f)(εs)ξγηα,

by an induction from the 1-dimensional case. Since

∑
γ,α

1

γ! · α!
(∂α+γy f)ξγηα =

∑
α

1

α!
(∂αy f)(εs+ ξ)ηα,
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we see that the trick of formal Taylor expansion commutes with addition of the nilpotent
part of the parameter. Hence it is legal to take only part of the nilpotent out of the parameter
f(εs+ n).

More generally, we have the following theorem; a short proof of this theorem admitting
the analogy result of ordinary manifolds is given in appendix A.

Theorem 1.2.7 (Supermanifolds are Affine). For any two supermanifolds M and N , the
functor C∞ : SManop → R -SAlg that brings M to C∞(M) induces a natural bijection

SMan(M,N ) ∼= R -SAlg(C∞(N ), C∞(M)). □

As an application of this theorem along with theorem 1.2.6, we have

Example 1.2.7 (Universal Property of C∞(Rp|q)). Let x1, · · · , xp, ξ1, · · · , ξq be the coordi-
nates on Rp|q, then for any supermanifold S and any parity-preserving assignment

{x1, · · · , xp, ξ1, · · · , ξq} → C∞(S),

there exists a unique super R-algebra morphism ϕ : C∞(Rp|q) → C∞(S) such that the fol-
lowing diagram commutes:

C∞(Rp|q) C∞(S)

{x1, · · · , xp, ξ1, · · · , ξq}

φ

Note that theorem 1.2.6 alone does not give the uniqueness.

Example 1.2.8 (Direct Sum of Parity Reversed Vector Bundles). Recall in example 1.2.2 that
for an ordinary smoothmanifoldX , we have a supermanifold πTX; the inclusionC∞(X) ↪→
Ω•(X) gives the canonical projection πTX → X . The direct sum of two copies of πTX ,
denoted as πTX⊕πTX , is the supermanifold that satisfies the following universal property
diagram:

S

πTX ⊕ πTX πTX

πTX X

∃!

where S denotes an arbitrary supermanifold. Theorem 1.2.7 thus indicates that

πTX ⊕ πTX ∼= (X,Ω• ⊗C∞ Ω•).
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1.3 Differential Calculus on Supermanifolds

In the classical theory, vector bundles of rank n over a smooth manifoldM are 1-to-1
with locally free sheaves of C∞-modules of rank n overM , by sending a vector bundle E
to its sheaf of sections Γ(E); see page 33 in the book of Ramanan[6]. Given a locally free
sheaf E , its fiber of vectors at a point x, being the evaluation of the sections at x, is given
by Ex/mxEx where mx is the maximal ideal of C∞

x . These generalize to the super version
immediately.

A free super module of rank p|q over superring R is

Definition 1.3.1 (Free Super R-module of rank p|q). A free super R-module of rank p|q,
denoted as Rp|q, is a super R-module that admits a basis (ei)1≤i≤p+q where ei is even for
1 ≤ i ≤ p and is odd for p+ 1 ≤ i ≤ p+ q. This means that

Rp|q = Re1 ⊕ · · · ⊕ Rep+q,

where the direct sums are direct sums of abelian groups.

Definition 1.3.2 (Super Vector Bundle). Given a supermanifold M = (M,O). A super
vector bundle of rank p|q over M is a locally free sheaf E of super O-modules of rank p|q
overM , i.e., for any x ∈M there exists a neighborhood U of x such that E(U) ∼= O(U)p|q.

Similarly, the (super) tangent sheaf over M = (M,O) is defined to be the sheaf of
superderivations ofO(U) for each U open inM , where the superderivations are linear com-
binations of the homogeneous ones:

Definition 1.3.3 (Homogeneous Superderivation). Ahomogeneous superderivation of parity
i of the super R-algebraO(U) is an R-linear mapD ∈ EndiO(U) of parity i, satisfying the
graded Leibniz rule

D(st) = D(s)t+ (−1)ijs(Dt) (1.3.1)

for all s ∈ Oj(U) and t ∈ O(U).

We denote the set of all superderivations of parity i of O(U) by DeriO(U). Clearly,
DeriO(U) is an R-vector space, thus the set

DerO(U) := Der0 O(U)⊕ Der1 O(U)

of all superderivations ofO(U) is a super vector space overR. Also, the point-wisely defined
super O(U)-module structure applies to DerO(U), i.e., we define, for D ∈ DeriO(U) and
s ∈ Oj(U), sD ∈ Deri+j O(U) by

(sD)(t) := s ·D(t), for any t ∈ O(U).
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This makes DerO(U) a super O(U)-module.
We have obtained for each open U ⊂ M a super O(U)-module DerO(U). To make

these form a sheaf, we need to construct a restriction map DerO(U) → DerO(V )whenever
V ⊂ U . This requires the local feature of derivation, for which in the classical theory one
uses the smooth bump function. Below gives the super version of smooth bump function.

Definition 1.3.4 (Support). The support of a superfunction s ∈ O(U) is the closed subset
supp s := U \ Ω in U , where

Ω = {x ∈ U | ∃ a neighborhood V ⊂ Uof x such that s|V = 0}.

Equivalently we have
supp s = {x ∈ U | [s]x 6= 0 ∈ Ox}.

Definition 1.3.5 (Super Bump Function). A super bump function around x ∈ U ⊂ M

supported inU is a section γ ∈ O0(M)with supp γ ⊂ U and γ|V = 1 for some neighborhood
V ⊂ U of x.

If we don’t require V to be large, then it is easy to see the existence of super bump
functions: For any x ∈ M , let U be an arbitrary neighborhood of x and W = (W,C∞

p|q) be
a super coordinate neighborhood of x contained in U . For any neighborhood V of x with
V ⊂ W and open set B with V ⊂ B ⊂ B ⊂ W , there exists by the classical theory a
smooth bump function f ∈ C∞(W ) ⊂ O0(W ) ⊂ C∞

p|q(W ) with supp f ⊂ B and f |V = 1.
As supp f is closed inW and is contained by B, supp f is closed inM , hence we can extend
f by zeros to the entireM , obtaining a super bump function f̃ ∈ O0(M) around x supported
in U .

For any s ∈ O(U), let γ ∈ O0(M) be a super bump function supported in U with
γ|V = 1 for some open V with V ⊂ U , then supp γ|Us ⊂ supp γ tells that γ|Us can be
extended by zeros toM . This gives

Lemma 1.3.1 (Extension by Bump Function). For any point x ∈ U and any section s ∈
O(U), there exists a global section S ∈ O(M) and a neighborhood V ⊂ U of x such that
S|V = s|V and suppS ⊂ supp s. Moreover, if s is homogeneous of parity i, then so does S.
□

We now state and prove the locality of superderivation.

Proposition 1.3.2 (Local Feature of Superderivations). Every superderivationD ∈ DerO(U)

is local in the sense that for any V ⊂ U and s, t ∈ O(U), if s|V = t|V , then (Ds)|V =

(Dt)|V .

Proof. By linearity it suffices to show that if s|V = 0 then (Ds)|V = 0. For any x ∈ V ,
there exists a super bump function γ ∈ O0(U) supported in V with γ|W = 1 for some
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neighborhoodW ⊂ V of x. Since supp(γs) ⊂ supp s∩ supp γ ⊂ (U \V )∩V = ∅, γs = 0,
hence

0 = (D(γs))|W = (Dγ)|W s|W + γ|W (Ds)|W = (Ds)|W .

Let x ∈ V vary and we conclude that (Ds)|V = 0.

We can now construct the desired restriction map.

Proposition 1.3.3 (Restriction of Superderivations). For anyD ∈ DerO(U) and open sub-
set V ⊂ U , there exists a unique D|V ∈ DerO(V ) such that

D|V s|V = (Ds)|V (1.3.2)

for any s ∈ O(U). Moreover, if D is homogeneous of parity i, then so is D|V .

Proof. For the uniqueness, for any D′ ∈ DerO(V ) satisfying eq. (1.3.2), we have for any
s ∈ O(V ) and x ∈ V , some S ∈ O(U) with S|W = s|W for some neighborhoodW ⊂ V of
x by lemma 1.3.1, which gives

(D′s)|W
proposition 1.3.2
=========== (D′S|V )|W

eq. (1.3.2)
======= (DS)|W . (1.3.3)

By proposition 1.3.2, (DS)|W is independent of the choice of S, hence eq. (1.3.3) tells that
D′s is locally determined by D and s. The identity axiom of sheaf concludes that D′ is
uniquely determined.

For the existence, we use eq. (1.3.3) as the definition of D|V s for any s ∈ O(V ), i.e.,
(D|V s)|W := (DS)|W where S andW are as the above; proposition 1.3.2 ensures that this
local definition glues up to giveD|V s. ClearlyD|V satisfies eq. (1.3.2); ifD is homogeneous,
it is obvious that D|V has the same parity as D. It remains only to verify that D|V satisfies
the graded Leibniz rule eq. (1.3.1). It suffices to do this locally: for D ∈ DerOi(U), any
s ∈ Oj(V ), t ∈ O(V ) and x ∈ V with S, T ∈ O(U) such that S|W = s|W and T |W = t|W
for a neighborhoodW ⊂ V of x, we have

(D|V (st))|W = (D(ST ))|W = (DS)|WT |W + (−1)ijS|W (DT )|W
= (D|V s)|W t|W + (−1)ijs|W (D|V t)|W

=
(
(D|V s)t+ (−1)ijs(D|V t)

) ∣∣∣
W
.

Equation (1.3.2) tells that this restriction map DerO(U) → DerO(V ) : D 7→ D|V is
compatible with the restrictionO(U) → O(V ). The gluing of superderivations follows from
that of superfunctions. Therefore DerO gives a sheaf of superO-modules which we call the
tangent sheaf, denoted as TM for a supermanifoldM.
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For TM to be a super vector bundle, it remains to check that it is locally free. In fact,
its local description is very similar to the tangent sheaf in the classical theory.

LetM be of dimension p|q and let (U, (x, ξ)) be a super coordinate neighborhood with
coordinates (x, ξ). We define p+ q superderivations

∂xi ∈ Der0 O(U), 1 ≤ i ≤ p,

∂ξj ∈ Der1 O(U), 1 ≤ j ≤ q,

by putting for any s =
∑

α sα(x)ξ
α ∈ O(U),

∂xis :=
∑
α

(∂xisα(x)) ξ
α

∂ξjs :=
∑
α

sα(x)(∂ξjξ
α)

(1.3.4)

where

∂ξjξ
α :=

(−1)#{αi<j}ξ(α1,··· ,ĵ,··· ,αk) j ∈ α

0 j 6∈ α

where ĵ implies that j is deleted. This is the same as putting ∂ξjξi := δij for each i = 1, · · · , q,
where δ is the Kronecker delta, and then extending it by the graded Leibniz rule. Also, one
may think ∂ξjξα as reordering ξα such that ξj is the first on the left and then killing ξj .

Theorem 1.3.4 (Local Description of Tangent Sheaf). Let M be of dimension p|q and let
(U, (x, ξ)) be a super coordinate neighborhood with coordinates (x, ξ), then (∂x, ∂ξ) is a
basis of the superO(U)-module TM(U), i.e., anyX ∈ TM(U) admits a unique decompo-
sition

X =
∑
1≤i≤p

X i∂xi +
∑

1≤j≤q

X j∂ξj , (1.3.5)

where X i,X j ∈ O(U).

Proof. The uniqueness of the decomposition is easy, because if X admits decomposition
eq. (1.3.5), there must be X i = Xxi and X j = Xξj . For the existence, we put X i = Xxi

and X j = Xξj and measure the difference

Y := X −

(∑
1≤i≤p

X i∂xi +
∑

1≤j≤q

X j∂ξj

)
.

It suffices to show that Y s = 0 for any s ∈ O(U). Clearly, Y xi = Y ξj = 0 for any i, j. By
the Leibniz rule we thus have

Y P = 0,

for any polynomial P ∈ R[x1, · · · , xp, ξ1, · · · , ξq] ⊂ O(U). The remaining follows from
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the technique of approximation by polynomial, theorem 1.2.5:
Fix any s ∈ O(U). For any x0 ∈ U , there exists a polynomial P such that

[s]x0 − [P ]x0 ∈ mq+1
x0

.

By the local feature, superderivations induce maps on stalks, which gives

[Y s]x0 = [Y s]x0 − [Y P ]x0 = Y ([s]x0 − [P ]x0) ∈ Ymq+1
x0

.

By lemma 1.2.4, it suffices to show that Ymq+1
x0

⊂ mq+1
x0

. For any f ∈ mq+1
x0

, we may apply
a translation so that x0 = 0 and then write by eq. (1.2.2),

f = O(xq+1) +
∑
α

O(xq)ξα + · · ·+O(x)ξ1 · · · ξq

Taylor Expansion with Lagrange Remainder
=======================

∑
εI(x)xi1 · · · xiq+1−lξ

α1 · · · ξαl ,

where I = (i1, · · · , iq+1−l) and εI’s are the smooth functions given by the Taylor expansion.
Since Y vanishes on polynomials, by the Leibniz rule we obtain

Y f =
∑

(Y εI(x)) xi1 · · · xiq+1−lξ
α1 · · · ξαl ,

which tells that Y f ∈ mq+1
x0

by eq. (1.2.2).

Therefore we conclude that TM is indeed a super vector bundle onM of the same rank
as the dimension ofM.

Analogous to the classical theory, we define super tangent vectors as

Definition 1.3.6 (Homogeneous Super Tangent Vector). Let M = (M,O) be a supermani-
fold and and x ∈M , a homogeneous super tangent vector of parity i at x ofM, is a derivation
of parity i at x of Ox, i.e., an R-linear map

Xx : Ox → R

of parity i with R trivially graded, such that for any s ∈ Ox,j and any t ∈ Ox, the graded
Leibniz rule

Xx(st) = (Xxs)(εt)(x) + (−1)ij(εs)(x)(Xxt),

is satisfied.

The super R-vector space of all super tangent vectors (i.e., the space of the R-linear
combinations of the homogeneous super tangent vectors) is denoted as TxM, called the super
tangent space of M at x.
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Let x ∈ U and [X]x ∈ (TM)x, [X]x induces a map X̃ : Ox → Ox by its representative
X . It is easy to verify that the composition Xx := π ◦ X̃ : Ox → Ox → Ox/mx = R gives
a super tangent vector at x. If X is homogeneous, then the parity of Xx is the same as X .
Intuitively, this means that the “evaluation” at x of a super tangent vector field is a super
tangent vector at x. Indeed, the map TM(U) → (TM)x → TxM : X 7→ Xx is surjective,
as we have

Theorem 1.3.5 (Local Description of Super Tangent Space). Let M be of dimension p|q,
x0 ∈ M be any point and (U, (x, ξ)) be a super coordinate neighborhood of x0. The super
tangent space Tx0M is a super vector space over R with basis the p + q vectors ∂xi,x0 ∈
Tx0,0M, ∂ξj ,x0 ∈ Tx0,1M, 1 ≤ i ≤ p and 1 ≤ j ≤ q, where ∂xi ∈ (TM)0(U) and
∂ξj ∈ (TM)1(U) are defined as in eq. (1.3.4).

Proof. The proof is essentially the same as that of theorem 1.3.4.

Corollary 1.3.6. The dimension of super tangent space equals the dimension of the super-
manifold,

dimTxM = dimM. □

Since Xx = 0 if and only if Im X̃ ⊂ mx, one sees immediately that the kernel of
(TM)x → TxM is exactly mx(TM)x. Hence

Corollary 1.3.7. For any x ∈M ,

TxM ∼= (TM)x/mx(TM)x. □

Therefore this definition of the super tangent spaces fits the description at the beginning
of this section.

According to definition 1.3.6, it is easy to define the super version of tangent map.

Definition 1.3.7 (TangentMap). LetM = (M,O) andN = (N,R) be two supermanifolds.
Let Ψ = (ψ, ψ∗) : M → N be a morphism of supermanifolds, the tangent map TxΨ of Ψ at
x ∈M is the morphism of super vector spaces

TxΨ: TxM −→ Tψ(x)N
Xx 7−→ Xx ◦ ψ∗

where ψ∗ : Rψ(x) → Ox is the pullback between stalks.

Since ψ∗ preserves the parity, it is easy to verify that TxΨ is well-defined and preserves
the parity.

Clearly, if Ψ is the identity morphism on M, then TxΨ is the identity on TxM for any
x ∈M . It is also clear that taking tangent commutes with composition, i.e.,
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Proposition 1.3.8. Let Ψ = (ψ, ψ∗) : M → N and Φ = (ϕ, ϕ∗) : N → P be morphisms of
supermanifolds, then for any x ∈M ,

Tx(Φ ◦Ψ) = Tψ(x)Φ ◦ TxΨ. □

Hence we conclude that taking tangent is functorial.
Also, we have the chain rule:

Proposition 1.3.9. Let (ψ, ψ∗) : M = (M,O) → (N,R) be a supermorphism. If V ⊂ N

is a coordinate neighborhood parametrized by v = (y, η) and ψ−1(V ) be parametrized by
u = (x, ξ), then

∂ua ◦ ψ∗ =
∑
b

∂ua(ψ
∗vb)ψ∗ ◦ ∂vb ,

where, with dimM = p|q,

ua :=

xa 1 ≤ a ≤ p,

ξa−p p+ 1 ≤ a ≤ p+ q.

and similar convention applies to vb.

Proof. It is easy to see that the equality holds on evaluation at polynomial sections, hence
the similar argument in the proof of theorem 1.3.4 applies.

Restrict these to the stalk at a point ψ(x) ∈ V and take the quotient by the maximal
ideal (or one can use a similar proof as the above), we obtain

TxΨ(∂ua,x) =
∑
b

∂ua,x(ψ
∗vb)∂vb,ψ(x).

Hence we have a matrix representation of the tangent map, the Jacobian, similar to that
in classical case. However, tedious sign appears if we want to arrange proposition 1.3.9 in the
usual manner of matrix multiplication when dealing with composition of supermorphisms.
To fix this, the matrix should be modified.

Definition 1.3.8 (TheModified Super JacobianMatrix). Themodified super Jacobianmatrix
of a supermorphism Ψ: M → N , where dimM = p|q and dimN = p′|q′, under local
coordinates V ⊂ N with (y, η) and ψ−1(V )with (x, ξ), is the (p′+q′)×(p+q) supermatrix,
written in the convention y = y(x, ξ) = ψ∗y and η = η(x, ξ) = ψ∗η,

JΨ =

(
∂xy ∂ξy

−∂xη ∂ξη

)
.
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On evaluation at a point, we have

Jx0Ψ =

(
∂x,x0y 0

0 ∂ξ,x0η

)
=

(
∂x,x0y ∂ξ,x0y

∂x,x0η ∂ξ,x0η

)
= the matrix representation of Tx0Ψ.

With the modified Jacobian matrix, we have by direct computation using proposition 1.3.9,

Proposition 1.3.10. Let Ψ: M → N and Φ: N → P be two supermorphisms, then under
any local coordinates representation, we have

J(Φ ◦Ψ) = JΦ · JΨ

where entries of JΦ are considered as their pullback by Ψ when taking the matrix multipli-
cation. □

Remark 1.3.1. The reason why only the lower-left term has a minus sign can be explained
by

∂xi 7→ ∂xi(yj)∂yj + ∂xi(η
k)∂ηk = ∂yj · (∂xi(yj))− ∂ηk · (∂xi(ηk))

∂ξi 7→ ∂ξi(yj)∂yj + ∂ξi(η
k)∂ηk = ∂yj · (∂ξi(yj)) + ∂ηk · (∂ξi(ηk)).

That is, to make the left-multiplication of matrix representations of morphisms of super-
modules be compatible with the composition of morphisms, the entries should be the scalars
written at the right-hand side of the basis, instead of those written at the left-hand side as in
the classical case.

Definition 1.3.9 (Cotangent Sheaf). The cotangent sheaf of a supermanifoldM = (M,O)

is the dual of its tangent sheaf, i.e., it is the sheaf of morphisms of sheaves

Ω1M := T ∗M := HomSheaf ofO -Mod(TM,O).

The sections of Ω1M are called super differential 1-forms.

Note that Ω1M is also a sheaf of super O-modules.

Definition 1.3.10 (Differential of Superfunction). For any open subset U ⊂ M and i ∈ Z2,
we define the differential of a superfunction f ∈ Oi(U), for any open V ⊂ U ,

dV f ∈ Homi(TM(V ),O(V )),

by
(dV f)(D) = (−1)ijDf |V ∈ O(V ),

for all D ∈ (TM)j(V ) = Derj O(V ). Clearly, dV f gives a morphism of sheaves from
TM|U to O|U as V varies, hence df ∈ Ω1M(U). For non-homogeneous f , df is defined
as the sum of differentials of the homogeneous components of f .
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The differentiation dV preserves the parity and hence gives anO(V )-module morphism.
By the definition of restriction of superderivation, we see that d gives a morphism of sheaves
from O to Ω1M.

Moreover, it is easy to verify that

Proposition 1.3.11. For any f, g ∈ O(U),

d(fg) = (df)g + f(dg). □

Note that everything satisfies the Koszul sign rule.
Being the dual of the locally free TM, Ω1M is also locally free with the dual basis.

Theorem 1.3.12. The cotangent sheaf Ω1M is locally free with basis (dx1, · · · , dξq) in a
coordinate neighborhood (U, (x, ξ)). □

By definition,
dxi(∂xj) = δij, dxi(∂ξj) = 0.

dξi(∂xj) = 0, dξi(∂ξj) = −δij.

Therefore, any super differential 1-form ω reads locally as

ω =
∑
i

dxifi(x, ξ) +
∑
j

dξjgj(x, ξ),

where the coefficients fi’s are given by ω(∂xi) and gj’s are given by ω0(∂ξj)−ω1(∂ξj)where
ω0 and ω1 are the even and odd homogeneous components of ω, as one can verify. It follows
that

df =
∑
i

dxi(∂xif) +
∑
j

dξj(∂ξjf),

so d reads locally as
d =

∑
i

dxi∂xi +
∑
j

dξj∂ξj .

By wedging the 1-forms up, we can talk about k-forms in the super context.
LetA andB be two supermodules over a supercommutative ringR, their tensor product,

A⊗RB := RA×B/ ∼ is the freeR-moduleRA×B :=
⊕

(a,b)∈A×B R(a,b) modulo the relations

1(a+a′,b) =: (a+ a′, b) = (a, b) + (a′, b), (a, b+ b′) = (a, b) + (a, b′),

r(a,b) =: r(a, b) = (ra, b), (ar, b) = (a, rb),

for any a, a′ ∈ A, b, b′ ∈ B and r ∈ R. Writing a ⊗ b for the equivalence class of (a, b),
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A⊗R B is naturally Z2-graded by

A⊗R B =
⊕
k∈Z2

⊕
i+j=k

{∑
a⊗ b

∣∣∣ a ∈ Ai, b ∈ Bj

}
.

With the induced right module structure on A and B, one sees that the induced right
module structure on A⊗R B obeys Koszul sign rule. The tensor product of two morphisms
of super R-modules f : A→ A′ and g : B → B′ is defined by

f ⊗R g : A⊗R B −→ A′ ⊗R B
′

a⊗ b 7−→ (−1)p(g)p(a)f(a)⊗ g(b)

for homogeneous g and a ∈ A; the definition for non-homogeneous cases is given by the sum
of homogeneous components. Note that this makes (f⊗Rg)(a⊗b) = (−1)p(g)p(a)f(a)⊗g(b)
follow the sign rule.

For a single supermodule A over supercommutative ring R, we can consider its tensor
with itself. WriteA⊗n := A⊗R · · ·⊗RA for the tensor product of n copies ofA andA⊗0 = R

by convention, the super R-module

T •A =
⊕
n≥0

A⊗n

is the tensor superR-algebra of the supermoduleA, where the direct sum is that of modules,
which gives a Z2-grading on T •A. The super R-module T •A becomes a superring when
equipped with tensor product as the multiplication, and its R-algebra structure follows from
the inclusion R = A⊗0 ↪→ T •A.

Now, to define the wedge product, we use Deligne’s formalism. We put the ideal IA :=

(a⊗ a′ + (−1)p(a)p(a
′)a′ ⊗ a | a, a′ ∈ A0 ∪A1) of T •A. The exterior super R-algebra of the

supermodule A is the quotient
∧DA := T •A/IA.

We often omit the subscriptD and write a∧a′ as the equivalence class of a⊗a′ in ∧A. Apart
from the Z2-grading, ∧A is also graded cohomologically by

∧A =
⊕
n≥0

∧nA.

Definition 1.3.11 (Super Differential Form). LetM = (M,O) be a supermanifold. For any
open U ⊂M , the set of super differential forms over U is defined by

(ΩM)(U) := ∧(Ω1M)(U) =
⊕
k≥0

∧k(Ω1M)(U).
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Elements in (ΩkM)(U) := ∧k(Ω1M)(U) are called super differential k-forms on U .

The sheaf structure of Ω1M induces the sheaf structure of ΩM. Note that, unlike the
classical case, there not necessarily no top forms in ΩM, because the wedge of two odd
elements is symmetric. It is easy to check by definition that

f(ω ∧ ω′) = (−1)i(p(ω)+p(ω
′))(ω ∧ ω′)f,

ω ∧ ω′ = (−1)kl+p(ω)p(ω
′)ω′ ∧ ω,

for any homogeneous f ∈ Oi(U), ω ∈ (ΩkM)(U) and ω′ ∈ (ΩlM)(U).
Any k-form ω reads locally (non-uniquely)

ω|U =
∑

f df1 ∧ · · · ∧ dfk

for some open U and f ’s in O(U). The exterior differentiation d : O → Ω1M extends
uniquely to give d : ΩM → ΩM by

(dω)|U :=
∑

df ∧ df1 ∧ · · · ∧ dfk.

The proof of the well-definedness of d and the following propositions is necessarily identical
to the corresponding results in the classical theory.

Proposition 1.3.13. The operator d is a derivation which squares to zero:

d(ω ∧ ω′) = dω ∧ ω′ + (−1)kω ∧ dω′

for any form ω′ and k-form ω, and
d2 = 0.

1.4 Integration on Supermanifolds

The Berezinian is the super version of determinant. Given a (p+q)×(p+q) supermatrix
T , i.e., a matrix whose entries live in a superring R blocked as

T =

(
K L

M N

)
,

whereK is p× p, N is q × q,K and N have even entries and L andM have odd ones. If T
is invertible, then T quotient the nilpotent ideal I of R,(

K mod I 0

0 N mod I

)
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is also invertible with inverse the quotient of T−1. Since K and N are even with entries
living in the commutative ring R0, det(K) and det(N) are defined and are even units adding
nilpotents, which are again units, telling thatK andN are invertible. With this we decompose

T =

(
K L

M N

)
=

(
1 LN−1

0 1

)(
K − LN−1M 0

M N

)
,

in light of which the Berezinian of T is defined by

Ber(T ) := det(K − LN−1M) det(N)−1. (1.4.1)

Note that K − LN−1M has even entries, the determinant det(K − LN−1M) does make
sense. Also, Ber(T ) is even. By a tricky matrix argument in the paper of Leites[2], we have

Proposition 1.4.1. Given two (p+ q)× (p+ q) invertible supermatrices X and Y , then

Ber(XY ) = Ber(X) · Ber(Y ). □

To integrate on supermanifolds, we define firstly the integration on superdomains. As
usual, functions are integrated via densities:

Definition 1.4.1 (Densities on Superdomains). Let (t1, · · · , tp, θ1, · · · , θq) be the standard
coordinates ofRp|q, a density on a superdomainUp|q = (U,C∞

p|q) is anR-linearmapC∞
p|q,c(U) →

R, where C∞
p|q,c(U) is the set of compactly supported superfunctions on U , of the form

C∞
p|q,c(U) −→ R

g =
∑

I gI(t)θ
I 7−→

∑
I

∫
U
gI(t)fI(t) dt1 · · · dtp

for some fI(t) ∈ C∞(U), where I = (i1, · · · , ik) with i1 < · · · < ik varies among all
nonempty strictly increasing multi-indices of dimension no more than q and θI := θi1 · · · θik .

Usually we write a density µ as g 7→
∫
µg. Clearly, a density on Up|q restricts to a

density on any open sub-supermanifold of Up|q. Also, the gluing of smooth functions gives
the gluing of densities, telling that the set of densities form a sheaf of super vector spaces on
Rp|q, with parity defined by their parity as super linear maps. Moreover, the set of densities
on Up|q has a natural structure of C∞

p|q-module, given by∫
(µu)g :=

∫
µ(ug)

for any u ∈ C∞
p|q(U) and g ∈ C∞

p|q,c(U).
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It is easy to see that the density [dt1 · · · dtp dθ1 · · · dθq] on Up|q defined by

g = g0(t) + · · ·+ h(t)θq · · · θ1 7→
∫
U

dt1 · · · dtph(t)

is a basis of the C∞
p|q-module D(Up|q) of densities on Up|q. Hence

Proposition 1.4.2. The C∞
p|q-module D(Up|q) is free of rank 1|0 if q is even, of rank 0|1 if q

is odd. □

We have the change of variables formula, which is proposition 3.10.2 in the notes of
Deligne & Morgan[3]

Proposition 1.4.3 (Change of Variables). LetΦ = (ϕ, ϕ∗) : Up|q → Vp|q be an isomorphism,
then for any g ∈ C∞

c (Vp|q) := C∞
p|q,c(V ),

∫
V

[dt1 · · · dtp dθ1 · · · dθq]g = ±
∫
U

[dt1 · · · dtp dθ1 · · · dθq]Ber(JΦ)ϕ∗(g),

where the sign is positive if ϕ is orientation-preserving and is negative if it is orientation-
reversing. □

In particular a density precomposed with a change of parametrization is still a density.
Note that a compactly supported function on an open submanifold U ofM is extendible

by zeros, giving a inclusion C∞
c (U) ↪→ C∞

c (M). A density on supermanifold M is thus
defined to be an assignment C∞

c (M) → R that is locally a density on superdomains, i.e.,
the composition C∞

c (U) ↪→ C∞
c (M) → R is a density for any coordinate neighborhood U

inM.
One sees immediately that this is a natural generalization of the integration on ordinary

manifolds.

Example 1.4.1. For an ordinary orientable manifoldM , a top form ω along with an orien-
tation ofM gives a density onM by g 7→

∫
M
gω.

1.5 Generalized Supermanifolds and R1|1

Since sheaves are generally difficult to work with, one often thinks of supermanifolds in
term of theirS-points, i.e., instead ofM itself one considers the sets SMan(S,M) asS varies
among all supermanifolds[7]; theorem 1.2.7 makes it easy to describe the set SMan(S,M).
The fully faithful Yoneda embedding SMan → HomCat(SManop, Set) : M 7→ SMan(−,M)

gives an equivalence of categories between SMan and the subcategory of representable func-
tors in HomCat(SManop, Set). These motivate that

27



Definition 1.5.1 (Generalized Supermanifolds). A generalized supermanifold is a functor
F : SManop → Set.

What are smooth (super)functions on generalized supermanifolds? In the ordinary the-
ory, we have C∞(M) = Man(M,R). For a supermanifoldM, by theorem 1.2.6 we have as
sets

SMan(M,R1|1) ∼= {{x} → C∞
0 (M)}×{{θ} → C∞

1 (M)} ∼= C∞
0 (M)⊕C∞

1 (M) = C∞(M).

Moreover, noticing by the universal property that R1|1 × R1|1 ∼= R2|2, R1|1 is equipped
with an algebra structure

• Addition:

+: R1|1 × R1|1 → R1|1 : C∞(R1|1) −→ C∞(R1|1 × R1|1)

x 7−→ x1 + x2

θ 7−→ θ1 + θ2

• Multiplication:

· : R1|1 × R1|1 → R1|1 : C∞(R1|1) −→ C∞(R1|1 × R1|1)

x 7−→ x1x2 + θ1θ2

θ 7−→ x1θ2 + x2θ1

Strictly speaking,R1|1 is not an algebra with these; but SMan(M,R1|1) becomes a super
R-algebra such that the above set-bijection is an isomorphism of super algebras, with addition
and multiplication graphically

M

R1|1 R1|1 × R1|1 R1|1

R1|1

+·

(f,g)
gf

f+g

f ·g

and the grading inherited from C∞(M).

Remark 1.5.1. The algebra structure on SMan(M,R1|1) can also be seen as induced from
C∞(M) via the set-bijection, which spelled out is exactly the above.
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Remark 1.5.2. It follows that R1|1 represents the functor C∞ : SManop → R - SAlg : M 7→
C∞(M).

By the Yoneda lemma,

C∞(M) ∼= SMan(M,R1|1) ∼= Hom(SMan(−,M), SMan(−,R1|1)). (1.5.1)

Moreover, the super algebra structure on SMan(S,R1|1) induces a super algebra structure
on Hom(SMan(−,M), SMan(−,R1|1)) which makes the above composition an isomor-
phism of super algebras. Therefore smooth functions onM can be defined as natural trans-
formations from the functor SMan(−,M) to SMan(−,R1|1) ∼= C∞. This generalizes to
give smooth functions on generalized supermanifolds, i.e., for a generalized supermanifold
F : SManop → Set, we put

C∞(F) := Hom(F , SMan(−,R1|1)) ∼= Hom(F , C∞).

In terms of the S-points, the algebra structure of C∞(F) is described by

f + g : F(S) −→ C∞(S)

x 7−→ f(x) + g(x)

f · g : F(S) −→ C∞(S)

x 7−→ f(x) · g(x)

for any f, g ∈ C∞(F).

2. A Discussion on SMan(R0|δ, X)

Let δ be a non-negative integer and X be an ordinary manifold of dimension n. In the
following we consider the generalized supermanifold SMan(R0|δ, X) defined by

SMan(R0|δ, X) : SManop −→ Set
S 7−→ SMan(S × R0|δ, X)

whose action onmorphisms is obvious. It is a basic but important object in the study of super-
symmetric field theories, for example see the paper of Stolz and Teichner[8]. Also, a proof of
the Chern-Gauss-Bonnet theorem using SMan(R0|2, X) is given by Berwick-Evans[4], whose
outline is described in section 2.3.
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2.1 General Properties of SMan(R0|δ, X)

Let θ1, · · · , θδ be the (odd) coordinates on R0|δ, the universal property of product tells
that S × R0|δ is in fact the supermanifold (|S| × pt, C∞(S)[θ1, · · · , θδ]), where |S| denotes
the base manifold of S.

According to theorem 1.2.7, an S-point Φ ∈ SMan(R0|δ, X)(S) is determined by its
morphism of super R-algebras Φ∗ : C∞(X) → C∞(S × R0|δ) = C∞(S)[θ1, · · · , θδ]. The
direct sum decomposition of C∞(S)[θ1, · · · , θδ] via θ-coordinates gives

Φ∗ = f +
∑
I

φIθ
I ,

where I = (i1, · · · , ik) with i1 < · · · < ik varies among all nonempty strictly increasing
multi-indices of dimension no more than q, θI := θi1 · · · θik and f, φI : C∞(X) → C∞(S)

are linear maps. The requirement that Φ∗ is a super R-algebra morphism gives further re-
strictions to f and φI ; for instance, f must be a super R-algebra morphism, hence it induces
a map of supermanifolds (S =)S × pt → X .

Given a super R-algebra homomorphism ϕ : A→ B, an R-linear map ψ : A→ B is an
even derivation with respect to ϕ if ψ(Ai) ⊂ Bi for each i ∈ Z2 and

ψ(ab) = ψ(a)ϕ(b) + ϕ(a)ψ(b), ∀a, b ∈ A;

is an odd derivation with respect to ϕ if ψ(Ai) ⊂ Bi+1 for each i ∈ Z2 and

ψ(ab) = ψ(a)ϕ(b) + (−1)p(a)ϕ(a)ψ(b), ∀a ∈ A0 ∪ A1, b ∈ A.

Derivations with respect to ϕ are the linear combinations of even and odd ones. The set of
all derivations with respect to ϕ is denoted as Derφ(A,B).

It is easy to verify the following lemma:

Lemma 2.1.1. Let M and N be two supermanifolds and f : N → M be a morphism of
supermanifolds. The map

(DerC∞(M))⊗f C
∞(N ) −→ Derf (C∞(M), C∞(N ))

D ⊗f g 7−→ g · (f ∗ ◦D)

is an isomorphism of C∞(N )-modules, whose inverse is expressed locally in coordinates
u = (x, ξ) on M, by

Derf (C∞(M), C∞(N )) −→ (DerC∞(M))⊗f C
∞(N )

V 7−→
∑
∂ua ⊗f V (ua)
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□

Example 2.1.1 (SMan(R0|1, X)). The S-points of SMan(R0|1, X) are super R-algebra ho-
momorphisms

Φ∗ = f + φθ.

The Φ∗ is an algebra homomorphism if and only if f is a super R-algebra homomorphism
and φ : C∞(X) → C∞(S) is an odd derivation with respect to f , i.e.,

φ(ab) = φ(a)f(b) + (−1)p(a)f(a)φ(b), ∀a, b ∈ C∞(X),

where (−1)p(a) is in fact always 1 since a is always even.
By abuse of notation, the isomorphism in lemma 2.1.1 identifies φ with an element

φ ∈ (DerC∞(X)) ⊗f C
∞(S). This makes φ a global section of the pullback sheaf (also

called the inverse image functor) f ∗πTX on S, where πTX , again by abuse of notation, is
the parity-reversed tangent sheaf on X .

Recall in example 1.2.2 that C∞(πTX) = Ω•(X); global sections in f ∗πTX are in
fact one-to-one to S-points in πTX(S) := SMan(S, πTX), via the map

(DerC∞(X))⊗f C
∞(S) −→ R - SAlg(Ω•(X), C∞(S)) ∼= SMan(S, πTX)

D ⊗f g 7−→ (ω 7→ g · f ∗ω(D))

The inverse to thismap sends amorphismϕ∗ : Ω•(X) → C∞(S) to the compositionC∞(X)
d−−→

Ω•(X)
φ∗
−−→ C∞(S), which is a derivation with respect to f : C∞(X) ↪→ Ω•(X) → C∞(S).

These conclude that
SMan(R0|1, X) ∼= πTX,

which means that SMan(R0|1, X) is represented by πTX .

More generally, one sees that φi : C∞(X) → C∞(S) is an odd derivation with respect
to f for each i = 1, · · · , δ.

Recall that in section 1.5,C∞(SMan(R0|δ, X)) is identified with the set of natural trans-
formations SMan(R0|δ, X) ⇒ C∞. Given a function a ∈ C∞(X), it induces maps

a : SMan(R0|δ, X)(S) −→ C∞(S)

Φ∗ = f +
∑

I φIθ
I 7−→ f(a)

with obvious naturality in S, giving a superfunction on SMan(R0|δ, X). Since f is an alge-
bra homomorphism, this gives an inclusion of algebras C∞(X) ↪→ C∞(SMan(R0|δ, X)).
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Similarly, we can define for each multi-index I ,

dIa : SMan(R0|δ, X)(S) −→ C∞(S)

Φ∗ = f +
∑

I φIθ
I 7−→ φI(a)

whose naturality is also clear. The following suggests that we may write dik · · · di1 := dI for
more natural symbolic computation.

Let x = (xi) be local coordinates on X , then for any g ∈ C∞(X), we have locally

f(a) +
∑
I

φI(a)θ
I = Φ∗(a) = a

(
f(x) +

∑
I

φI(x)θ
I

)

= a(f(x)) +
∑
β

1

β!
(∂βxa) (f(x))

(∑
I

φI(x)θ
I

)β

.

For δ = 2, we compute

f(a) + φ1(a)θ
1 + φ2(a)θ

2 + φ(1,2)(a)θ
1θ2

= a(f(x)) +
∂a

∂xk
(f(x))(φ1(xk)θ

1 + φ2(xk)θ
2)

+

(
∂2a

∂xk∂xl
(f(x))φ2(xl)φ1(xk +

∂a

∂xk
(f(x))φ(1,2)(xk)

)
θ1θ2.

Hence we conclude

dia =
∂a

∂xk
dixk, i = 1, 2,

d2 d1a =
∂2a

∂xk∂xl
d2xl d1xk +

∂a

∂xk
d2 d1xk.

These can be generalized to any δ ≥ 0.

Remark 2.1.1. For di’s this turns out to be natural: as φi ∈ Derf (C∞(X), C∞(S)), we see
that dig is in fact the composition

C∞(S × R0|δ) −→ Derf (C∞(X), C∞(S))
f∗ dg−−−→ C∞(S)

Φ∗ = f +
∑

I φIθ
I 7−→ φi 7→ f ∗ dg(φi) = φi(g).

In particular, via the Yoneda lemma, one sees that for δ = 1, dg ∈ C∞(SMan(R0|1, X)) ∼=
Ω•(X) is exactly the 1-form of the exterior differentiation of g.
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2.2 Details about SMan(R0|2, X)

For Φ ∈ SMan(R0|2, X)(S), we write

Φ∗ = f + φ1θ
1 + φ2θ

2 + Eθ1θ2,

where φi : C∞(X) → C∞
1 (S) and f, E : C∞(X) → C∞

0 (S). A computation shows that Φ∗

is an algebra homomorphism if and only if

f(ab) = f(a)f(b),

φi(ab) = φi(a)f(b) + f(a)φi(b), i = 1, 2,

E(ab) = E(a)f(b) + f(a)E(b)− φ1(a)φ2(b) + φ2(a)φ1(b),

for any a, b ∈ C∞(X). Thus S-points of SMan(R0|2, X) can be identified with quadruples
of linear maps (f, E, φ1, φ2) satisfying the above equations.

Recall that given a connection∇ on X , the associated Hessian is defined by

Hess : πTX ⊗ πTX ∼= TX ⊗ TX −→ Diff≤2(X)

V ⊗W 7−→ VW −∇VW

where TX stands for Der(C∞(X)) in fact. For an S-point f : C∞(X) → C∞(S), as
f ∗πTX = (DerC∞(X))⊗f C

∞(S), we can define the pullback of Hessian by f

f ∗Hess : f ∗πTX ⊗ f ∗πTX −→ f ∗Diff≤2(X)

(V ⊗f s)⊗ (W ⊗f t) 7−→ Hess(V,W )⊗f (st)

Since Hess is linear in both V andW , the above f ∗Hess is well-defined.
Similarly to example 2.1.1, we see thatφ1, φ2 ∈ f ∗πTX . Thuswe have f ∗Hess(φ1, φ2) ∈

f ∗Diff≤2(X). For any a, b ∈ C∞(X), since for any V,W ∈ πTX ,

Hess(V,W )(ab) = (VW −∇VW )(ab) = V (Wa · b+ aWb)−∇VWa · b− a∇VWb

= b(VWa−∇VWa) +Wa · V b+ V a ·Wb+ a(VWb−∇VWb)

= b · Hess(V,W )(a) + V b ·Wa+ V a ·Wb+ a · Hess(V,W )(b),

we have

f ∗Hess(φ1, φ2)(ab) = f(a)·Hess(φ1, φ2)(b)+f(b)·Hess(φ1, φ2)(a)+φ1(a)φ2(b)−φ2(a)φ1(b).
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Thus if we put F := E + f ∗Hess(φ1, φ2), then

F (ab) = E(ab) + f ∗Hess(φ1, φ2)(ab)

= (E + f ∗Hess(φ1, φ2))(a)f(b) + f(a)(E + f ∗Hess(φ1, φ2))(b)

= F (a)f(b) + f(a)F (b).

Noticing that f ∗Hess(φ1, φ2) is even, F : C∞(X) → C∞
0 (S) is an even derivation with

respect to f .
Since adding or abstracting f ∗Hess(φ1, φ2) is invertible, we see that S-points Φ ∈

SMan(R0|2, X) can be identified with quadruples (f, F, φ1, φ2) satisfying the properties de-
scribed above.

Recall example 1.2.8; let p : TX → X be the usual projection, then p∗(πTX ⊕ πTX)

is the supermanifold (TX, p∗(Ω• ⊗C∞ Ω•)). Since

p∗(Ω•(X)⊗C∞(X) Ω
•(X)) = (Ω•(X)⊗C∞(X) Ω

•(X))⊗p C
∞(TX),

S-points of p∗(πTX ⊕ πTX) are one-to-one to pairs

(ϕ, ψ) ∈ R - SAlg(C∞(TX), C∞(S))× R - SAlg(Ω•(X)⊗C∞(X) Ω
•(X), C∞(S))

such that the following diagram commutes

C∞(S) Ω•(X)⊗C∞(X) Ω
•(X)

C∞(TX) C∞(X)

ψ

φ

p∗

The universal property of C∞(TX) asserts that ϕ can be identified with (f, F ), where f =

ϕ ◦ p∗, see appendix B. The universal property of tensor product along with the same ar-
gument in example 2.1.1 tells that ψ can be identified with (φ1, φ2). Therefore S-points of
p∗(πTX⊕πTX) are one-to-one to quadruples (f, F, φ1, φ2), which is one-to-one to S-points
of SMan(R0|2, X). As all identifications are natural in S, we conclude

Lemma 2.2.1. For an ordinary manifold X equipped with a connection, we have

SMan(R0|2, X) ∼= p∗(πTX ⊕ πTX),

i.e., SMan(R0|2, X) is represented by p∗(πTX ⊕ πTX). □

The connection ∇ on X splits T (TX) into horizontal and vertical bundles T (TX) ∼=
H(TX)⊕V (TX), and there is canonicallyH(TX) ∼= p∗TX ∼= V (TX). Precomposition by
T (TX) ∼= H(TX)⊕V (TX) ∼= p∗(TX⊕TX) givesΩ•(TX) ∼= p∗(Ω•(X)⊗C∞(X)Ω

•(X)),
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thus πT (TX) ∼= p∗(πTX ⊕ πTX). Therefore with lemma 2.2.1, we have

C∞(SMan(R0|2, X)) = Hom(SMan(R0|2, X), C∞)

∼= Hom(p∗(πTX ⊕ πTX), C∞)

∼= Hom(πT (TX), C∞)

∼= C∞(πT (TX)) = Ω•(TX).

(2.2.1)

Example 2.2.1. The Yoneda lemma tells that, given a superfunction inC∞(SMan(R0|2, X)),
its image in Ω•(TX) under eq. (2.2.1) is its value on the πT (TX)-point corresponding to
the quadruple (f, F, φ1, φ2) = (p∗, i ◦ d, D1, D2), where i : Ω1(X) ↪→ C∞(TX) is defined
in the beginning of appendix B, and

p∗ : C∞(X)
p∗−−→ C∞(TX) ↪→ Ω•(TX),

i ◦ d : C∞(X)
d−−→ Ω1(X)

i−−→ C∞(TX) ↪→ Ω•(TX),

D1 : C
∞(X)

d−−→ Ω•(X)⊗C∞(X) 1 → p∗(Ω•(X)⊗C∞(X) Ω
•(X)) ∼= Ω•(TX),

D2 : C
∞(X)

d−−→ 1⊗C∞(X) Ω
•(X) → p∗(Ω•(X)⊗C∞(X) Ω

•(X)) ∼= Ω•(TX).

To give the explicit expressions of D1 and D2, we need to describe the identification
T (TX) ∼= H(TX)⊕ V (TX) ∼= p∗(TX ⊕ TX) explicitly. The map T (TX) ↠ H(TX) ∼=
p∗TX is in fact given by the following universal property diagram:

T (TX)

p∗TX TX

TX X

dp

p̃

p

where the arrows (except the dashed one) labeled by no symbols are the projections of vector
bundles.

For the map T (TX) ↠ V (TX) ∼= p∗TX , let x1, · · · , xn the coordinate functions of
a coordinate neighborhood U of X , then x1, · · · , xn, y1 := i ◦ dx1, · · · , yn := i ◦ dxn are
the coordinates of p−1(U) ∼= U × Rn of TX . The fibres of V (TX)|p−1(U) over TX are
exactly the spans of ∂

∂yi
’s. Since the fibres of p∗TX|p−1(U) are the spans of ∂

∂xi
’s, the map

T (TX) ↠ V (TX) ∼= p∗TX is given by ∂
∂xi

7→ 0, ∂
∂yi

7→ ∂
∂xi

along each fibre.
With these, it is easy to see that under the above convention of local coordinates,

p∗(xi) = xi, i ◦ d(xi) = yi, D1(xi) = dxi, D2(xi) = dyi.
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Since TX is canonically oriented by local parametrizations (x1, · · · , xn, i◦dx1, · · · , i◦
dxn), the integration of top forms on TX induces the integration on SMan(R0|2, X), via

C∞(SMan(R0|2, X)) ∼= Ω•(TX)
project−−−→ Ω2n(TX)

∫
−→ R, (2.2.2)

if only the integration of the obtained top form could be defined.

Example 2.2.2. Recall that given a function a ∈ C∞(X), we have superfunctions

a, d1a, d2a, d2 d1a ∈ C∞(SMan(R0|2, X)).

With the results in example 2.2.1, the identification in eq. (2.2.1) sends

C∞(SMan(R0|2, X)) −→ Ω•(TX)

a 7→ p∗(a)

d1a 7→ D1(a) ∈ Ω1(TX)

d2a 7→ D2(a) ∈ Ω1(TX)

d2 d1a 7→ i(da)− p∗Hess(D1, D2)(a)

An iterating argument based on lemma 2.2.1 gives the following general result, which
is the proposition 3.3 on the paper of Berwick-Evans[4].

Proposition 2.2.2. Let δ be a non-negative integer. Given a choice of connection on TX ,
there is an isomorphism

SMan(R0|δ, X) ∼= πT (T δ−1X)

as supermanifolds. For δ > 2 this isomorphism requires a framing of R0|δ. □

2.3 The Outline of a Proof of the Chern-Gauss-Bonnet Theorem

As an application of our results of SMan(R0|2, X), a proof of the Chern-Gauss-Bonnet
theorem is given in the paper of Berwick-Evans[4], for which we give a short description
here.

Let (X, g) denote an ordinary closed Riemannian manifold of dimension n, and the con-
nection∇ onX be the Levi-Civita connection. The partition functionZX of 0|2-dimensional
supersymmetric sigma models takes the form

ZX(g, h) :=

∫
SMan(R0|2,X)

exp(−Sh)
N

,

where the integration on SMan(R0|2, X) is defined by eq. (2.2.2), exp(−Sh)/N is the in-
tegrand, Sh ∈ C∞(SMan(R0|2, X)) is the action functional in the model and N is the
normalization constant for which we take N = (2π)

n
2 . It turns out that for any S-point
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Φ ∈ SMan(R0|2, X)(S),

Sh(Φ) =
1

2
〈F, F 〉+1

2
R(φ1, φ2, φ1, φ2)− 〈F,∇h 〉−Hess(φ1, φ2)h,

where R denotes the Riemann curvature tensor associated to the Levi-Civita connection on
X .

As a consequence of the general structure of quantization for 0|δ-dimensional Euclidean
field theories, we have

Corollary 2.3.1. The number ZX(g, h) is independent of the metric g and the function h. □

This is the corollary 1.3, which is proved after proposition 1.39, in the paper of Berwick-
Evans[4].

Calculation of ZX(g, 0) and lim
λ→∞

ZX(g, λh) thus gives the following form of Chern-
Gauss-Bonnet theorem:

Theorem 2.3.2 (Chern-Gauss-Bonnet). Let R denote the Riemannian curvature tensor as-
sociated to the Levi-Civita connection on a closed Riemannian manifold X , and let Pf(R)
be the Pfaffian density of the curvature R. Then

1

(2π)
n
2

∫
X

Pf(R) = ZX(g, 0)
corollary 2.3.1
========== lim

λ→∞
ZX(g, λh) = Index(∇h),

where h is any Morse function onX and Index(∇h) is the Hopf index of the gradient vector
field ∇h of h. □
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Appendix

Appendix A Supermanifolds are Affine

Since the pullbacks of superfunctions are determined locally, it is clear that the functor
C∞ : SManop → R - SAlg is faithful. It remains only to show that C∞ is full, i.e., let M =

(M,O) and N = (N,R) be two supermanifolds, we show that for any super R-algebra
homomorphism ϕ : R(N) → O(M), there exists a supermorphism Ψ = (ψ, ψ∗) : M → N
such that ψ∗ = ϕ. As the projection ε : O(M) → C∞(M) is equal to the quotient of the
nilpotent ideal, ϕ induces an R-algebra morphism ϕ̃ : C∞(N) → C∞(M) such that the
following diagram commutes

R(N) O(M)

C∞(N) C∞(M)

ε

φ

ε

φ̃

The following theorem tells that ϕ̃ is the pullback of smooth functions by a smooth map
ψ : M → N .

Theorem A.1 (Manifolds are Affine). LetM andN be two ordinary smooth manifolds. The
functor C∞ : Manop → R -Alg induces a natural bijection

Man(M,N) ∼= R -Alg(C∞(N), C∞(M)).

Proof. This is a consequence of theorem 3.8 and theorem 7.2 in the book of Nestruev[9].

Now we use ψ : M → N to define the restrictions of ϕ to open subsets U ⊂ N ,

ϕ|U : R(U) → O(ψ−1(U)),

in a way that is compatible to the restrictions, so that ϕ is extended to a sheaf morphism.
This relies on the following lemma

Lemma A.2. For any h ∈ R(N) such that h|U = 0 for some open subset U ⊂ N ,
ϕ(h)|ψ−1(U) = 0.

Proof. For any x ∈ U , by the argument after definition 1.3.5, there exists a bump function
ρ ∈ R(N) supported in U with ρ|V ≡ 1 in some neighborhood V of x. Clearly, ρh = 0,
hence

0 = ϕ(ρh) = ϕ(ρ)ϕ(h).
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Restricting the equation to ψ−1(V ), we obtain

0 = ϕ(ρ)|ψ−1(V )ϕ(h)|ψ−1(V ).

Since ϕ̃ and ε both commute with the restriction,

ε ◦ ϕ(ρ)|ψ−1(V ) = ϕ̃ ◦ ε(ρ)|ψ−1(V ) = ϕ̃ ◦ ε(ρ|V ) = 1.

Hence ϕ(ρ)|ψ−1(V ) is a unit added a nilpotent, which is also a unit. Thus

0 = ϕ(h)|ψ−1(V ).

As x varies in U , we conclude that ϕ(h)|ψ−1(U) = 0 as desired.

With this lemma, ϕ|U : R(U) → O(ψ−1(U)) is defined as the unique map such that

ϕ|U(g)|ψ−1(V ) = ϕ(g̃)|ψ−1(V ),

for any g ∈ R(U) and g̃ ∈ R(N) with g̃|V = g|V for some open set V ⊂ U . One verifies
easily that this extends ϕ to a morphism of sheaves, finishing the proof.

Appendix B Universal Property of C∞(TX)

Considering the C∞(X)-module Ω1(X), we have a C∞(X)-linear map i : Ω1(X) ↪→
C∞(TX), defined by putting, for any ω ∈ Ω1(X), i(ω) ∈ C∞(TX) to be the function that
sends a point (x, vx) ∈ TX to ω(V )(x) ∈ R, where V ∈ Γ(TX) is any global vector field
such that Vx = vx. As ω : Γ(TX) → C∞(X) is C∞(X)-linear, i(ω) is independent of the
choice of V . It is easy to see that i is injective.

The universal property of C∞(TX) is stated as:

Theorem B.1. For any S-point of X (S = (|S|,O) is some supermanifold) τ : S → X ,
τ ∗ : C∞(X) → C∞(S) gives C∞(S) a structure of C∞(X)-algebra. Under this structure,
for any C∞(X)-linear map Ψ: Ω1(X) → C∞

0 (S) ⊂ C∞(S), there exists a unique super R-
algebra morphism ϕ : C∞(TX) → C∞(S) such that Ψ = ϕ ◦ i, i.e., the following diagram
commutes:

C∞(TX) C∞(S)

Ω1(X)

φ

i
Ψ

Proof. IfX has a global parametrization x1, · · · , xn so that TX is isomorphic to the product
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bundle X × Rn, then

C∞(TX) = C∞(X × Rn) ∼= C∞(X)⊗R C∞(Rn),

where C∞(X)⊗R C∞(Rn) is the smooth envelope of the tensor product, and the result fol-
lows from the universal property of the smooth envelope (see definition 3.36 and lemma 4.30
in the book of Nestruev[9]) and the universal property of C∞(Rn) in example 1.2.7 tensoring
C∞(X):

C∞(X)⊗R C∞(Rn) C∞(S)

Ω1(X) = C∞(X)[dx1, · · · , dxn]

φ

i
Ψ

For a general manifold X , if we could apply some restriction morphisms to bring the
statement into local coordinate charts, then the above case would give the desired ϕ locally.
The uniqueness in that case’s statement ensures that we can glue the local terms up, obtaining
a unique ϕ such that the following diagram commutes for any coordinate chart U :

C∞(TX) C∞(S)

C∞(U × Rn) O(τ−1(U))

φ

φ|U×Rn

As the restrictions for C∞, Ω1 and i are obvious, we need only construct the restrictions
of Ψ. Since Ψ is C∞(X)-linear, the usual trick of multiplying a bump function tells that for
any open subsetU ⊂ X , ifω ∈ Ω1(X) satisfiesω|U = 0, thenΨ(ω)|τ−1(U) = 0. With this we
can define the restriction of Ψ to U , Ψ|U : Ω1(U) → O(τ−1(U)), as the unique assignment
such that

Ψ|U(η)|τ−1(V ) = Ψ(η̃)|τ−1(V ),

for any η ∈ Ω1(U) and η̃ ∈ Ω1(X) with η̃|V = η|V for some open set V ⊂ U . Such Ψ|U is
C∞(U)-linear and is a reasonable restriction since the following diagram commutes

Ω1(X) C∞(S)

Ω1(U) O(τ−1(U))

Ψ

Ψ|U

The fact that ϕ does make the desired diagram commute follows from that of the restrictions,
therefore we have finished the proof.

Recall that p : TX → X is the usual projection. Given a super R-algebra morphism
ϕ : C∞(TX) → C∞(S), its composition with p∗ : C∞(X) → C∞(TX) and C∞(X)

d−−→
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Ω1(X)
i−−→ C∞(TX) respectively gives a superR-algebramorphism f : C∞(X) → C∞(S)

and an even derivation F : C∞(X) → C∞
0 (S) ⊂ C∞(S) with respect to f .

Under the identification Derf (C∞(X), C∞(S)) ∼= (DerC∞(X)) ⊗f C
∞(S), the uni-

versal property of C∞(TX) gives the following map, which is the inverse of the above
assignment that ϕ 7→ (f, F ).

(DerC∞(X))⊗f C
∞(S) −→ C∞(X) - SMod(Ω1(X), C∞(S)) ∼= SMan(S, TX)

D ⊗f g 7−→ (ω 7→ g · f ∗ω(D)) =: Ψ 7→ ϕ

Therefore we obtain

SMan(S, TX) ∼= R - SAlg(C∞(TX), C∞(S))

∼= C∞(X) - SMod(Ω1(X), C∞(S))

∼=
⋃

f∈R - SAlg(C∞(TX),C∞(S))

{f} × Derf (C∞(X), C∞(S)),

i.e., S-points of TX can be identified with the pairs (f, F ).
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