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A Remark about the Notes
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1

https://sustech-math.github.io/zelmanov.html


Contents

Lecture 1 4
1 Review of Abstract Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Lecture 2 4
2 Generators and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Free Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Generated Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Undecidable Word Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Extension Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Finitely Presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Length-lex (Lexicographical) Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Lecture 3 8
Free Semigroup Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Reduction to Irreducible Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Gröebuer-Shirshov Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Applications of Gröebuer-Shirshov Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Lecture 4 11
Poincaré-Birkhoff-Witt Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Lecture 5 13
Proof of the Poincaré-Birkhoff-Witt Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 14
Proof of the Groöebuer-Shirshov Bases Theorem . . . . . . . . . . . . . . . . . . . . . . . 14

Lecture 6 15
Gröebuer-Shirshov Bases For Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Further Applications of Gröebuer-Shirshov Bases . . . . . . . . . . . . . . . . . . . . . . . 16
Graded Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Commutative Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Lecture 7 18
5 Dehn function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Free Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Lecture 8 22
Schreier Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Lecture 9 25
Cayley Graph of Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Lecture 10 28
7 Free Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Free Products of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Free Products of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Lecture 11 32
Ping-Pong Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Wreath Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



Lecture 12 35

Lecture 13 38
9 The Burnside Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Lecture 14 41
A Counterexample to General Burnside Problem . . . . . . . . . . . . . . . . . . . . . . . 43

Lecture 15 44
Another Counterexample to General Burnside Problem . . . . . . . . . . . . . . . . . . . 47

Lecture 16 48
10 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Tensor Product for Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Lecture 17 52
Tensor Product for Bimodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Hilbert’s Third Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Tensor Product for Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Lecture 18 56
Centroids and Central Simple Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Lecture 19 59
Brauer Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

11 Rings of Fractions and Ore Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Lecture 20 63
12 Filtrations and Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Lecture 21 67
13 Ultraproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Lecture 22 70
Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Lecture 23 74
An Elegant Proof of Ax-Grothendieck Theorem . . . . . . . . . . . . . . . . . . . . . . . . 75

3



Lecture 1

§1 Review of Abstract Algebra
• Groups, Subgroups H < G , Homomorphisms

• Normal Subgroups H �G, Quotient of Groups, the First Isomorphism Theorem

• Natural Homomorphism G/H1 → G/H2, H1 �H2 �G.

• Commutation

• Groups Generated by a Subset: X ⊂ G,

〈X〉 := {xε11 · · ·xεnn | x1, · · · , xn ∈ X, εi = ±1}

• Rings (with identity), Subrings, Homomorphisms

• Ideals I �R, Quotient by Ideals (Factor Ring), the First Isomorphism Theorem

• Natural Homomorphism R/I1 → R/I2, I1 ⊂ I2 �R.

• Cartesian Products of Groups
∏
i∈I Gi, Direct Products of Groups

∏
i∈I Gi

• Direct Sums of Rings
⊕

i∈I Ri

• Fields, (not necessarily commutative) Algebras over a Field A/F : A is an F -algebra if it is a vector
space over F equipped with a F -bilinear multiplication operator A×A→ A. Similarly an algebra
over a commutative ring is defined, i.e. an algebra over a commutative ring R is an R-module
equipped with an R-bilinear multiplication operator.

• Algebras Generated by a Subset: X ⊂ A,

〈X〉F :=
{∑

αx1 · · ·xn | α ∈ F ;x1, · · · , xn ∈ X
}

Note that the above formula holds for all kinds of (associative) algebras

• Vector Spaces, Linear Transformations LinF (V )

• Modules over an Algebra: A/F , V a vector space over F . A bilinear map A × V → V satisfying
a(bv) = ab · v and 1Av = v makes V into a (left) module over A. Note that a bilinear map is
equivalent to a homomorphism of algebras ϕ : A→ LinF (V ).

• Semigroup (with identity), Congruence Relation: x ∼ y ⇒ xz ∼ yz and zx ∼ zy.

• the “First Isomorphism Theorem” for semigroups:
Let ϕ : S1 → S2 be a homomorphism of semigroups. Define a congruence relation by that x ∼ y if
and only if ϕ(x) = ϕ(y), then S2

∼= S1/ ∼

• Natural Homomorphism S/ ∼1→ S/ ∼2, ∼1⊂∼2.
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Lecture 2

§2 Generators and Relations

Free Semigroups
Given a set X, the free semigroup generated by X is

X∗ := {all words of elements in X}.

It enjoys the following universal property:

Proposition 2.1. Universal Property of Free Semigroup

Let S be a semigroup and ϕ : X → S be a mapping, then ϕ uniquely extends to a homomorphism
ϕ : X∗ → S.

It is easy to observe the following: let S be a semigroup and A = {ai}i∈I be a set of generators of S,
then the inclusion A ↪→ S induces a surjective homomorphism ϕ : A ∗ → S.

Therefore S ∼= A ∗/ ∼, where ∼ is defined by a ∼ b if and only if ϕ(a) = ϕ(b).

Generated Congruence
Let ∼ be a congruence on S, then it can be seen as a subset of S × S. Let R ⊂ S × S, we say that R

generates ∼ if ∼ is the smallest congruence that contains R, or equivalently,

R =
⋂

all congruences that contains R.

The congruence generated by R always exists, noticing that S × S is itself a congruence.

Presentation
Let S be a semigroup and is isomorphic to the quotient of a free semigroup X∗, S ∼= X∗/ ∼. Let

R = {ak × bk}k be a subset of X∗ ×X∗ that generates ∼, then we say that

S = 〈X | ak = bk〉,

and S is presented by generators X and relations R.
If |X| < ∞ and |R| < ∞, then we say that S is finitely presented. It turns out that the notion of

finitely presented is independent of the choice of generators, see proposition 2.3.

Undecidable Word Problem
In general, given a presentation, it is algorithmatically undecidable to tell whether two words are

equal under that presentation.

Extension Problem
Let S = 〈si, i ∈ I〉 and T be two semigroups. Let {ti}i∈I ⊂ T and consider the map

ϕ : {si}i∈I → {ti}i∈I : si 7→ ti.
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Question

When is ϕ extendable to a homomorphism?

The answer is quite simple. Write S = 〈xi, i ∈ I | ak = bk〉 as is presented by X = {xi}i∈I and
R = {ak × bk}k, where xi 7→ si gives a natural map X∗ → S, then

Proposition 2.2. Characterization of Extension

ϕ extends to a homomorphism if and only if it preserves all the defining relations, in other words,
ak(t) = bk(t).

Proof. Just notice that we have naturally S ∼= X∗/ ∼ andX∗/ ∼1↪→ T , and ∼⊂∼1 gives a homomorphism
X∗/ ∼→ X∗/ ∼1.

Finitely Presented
Let S = 〈s1, · · · , sm〉 = 〈s′1, · · · , s′k〉 be generated by two different sets of generators.

Proposition 2.3. Finitely Presented is Well-defined

If S is finitely presented in s1, · · · , sm, then it is also finitely presented in s′1, · · · , s′k.

Proof. Write S = 〈x1, · · · , xm | a1 = b1, · · · , an = bn〉 with xi 7→ si. Since si and s′i generate S, we have

si = ci(s
′), 1 ≤ i ≤ m,

s′j = dj(s), 1 ≤ j ≤ k,

where ci(s) denotes some algebraic combination of sj ’s, and similarly is dj(s) defined. These give rise to
two kinds of relations that are satisfied in S:

al(c(s
′)) = bl(c(s

′)), 1 ≤ l ≤ n, (I)

s′j = dj(c(s
′)), 1 ≤ j ≤ k. (II)

Let Y ∗ = 〈yi, · · · , yk〉 be a free semigroup, the homomorphism Y ∗ → S : yj 7→ s′j gives S ∼= Y ∗/ ∼1.
Under the convention yj ↭ s′j , the two kinds of relations above are all included by ∼1, hence if we let
them generate a relation ∼2 on Y ∗, then ∼2⊂∼1, giving rise to a homomorphism Y ∗/ ∼2→ Y ∗/ ∼1.

On the other hand, the first kind of relations, with proposition 2.2, defines a homomorphism

S ∼= X/ ∼→ Y ∗/ ∼2 : si 7→ xi 7→ ci(y
′).

It remains only to show that these two homomorphisms are the inverse to each other.

Exercise 2.1
Complete the rest of the proof.

It is easy to see that S ∼= X/ ∼→ Y ∗/ ∼2→ Y ∗/ ∼1
∼= S is the identity on S. For the other direction,

we have

Y ∗/ ∼2 → Y ∗/ ∼1
∼= S ∼= X/ ∼ → Y ∗/ ∼2

yj 7→ yj ↭ s′j ↭ dj(x) 7→ dj(c(y))
by (II)
====== yj

Therefore, as we claimed before, the notion of finitely presented does not depend on the choice of the
finite set of generators.

6



Length-lex (Lexicographical) Order
Consider a free semigroup X∗ = 〈xi, i ∈ I〉 whose index I is ordered. We define an order on X∗ by

the following: for any two elements

v = xi1 · · ·xin , w = xj1 · · ·xjm ,

1. if n > m or m < n, then v > w or w < v respectively;

2. else n = m, then compare i1 and j1: if i1 > j1 then v > w; if i1 = j1, then compare i2 and j2 and
so on.

This order on X∗ is called the length-lex order, or the lexicographical order.

Definition 2.1. Minimality Condition

An ordered set satisfies the minimal condition if there does not exists an infinite descending chain
a1 > a2 > · · · in it.

Theorem 2.4. Lexicographical Order Inherits Minimality Condition

If X = (X,>) satisfies the minimal condition, then the length-lex order on X∗ also satisfies the
minimality condition.

Proof. Suppose that
v1 > v2 > · · ·

is an infinitely descending chain in X∗, then the length of vi’s forms a descending chain

`(v1) ≥ `(v2) ≥ · · ·

in N. Thus there must exists n such that `(vn) = `(vn+1) = · · ·. Then vn > vn+1 > · · · is an infinitely
descending chain in X∗ where all elements have the same length. The first letters of this sequences gives
xi1 ≥ xi2 ≥ · · ·, which stabilizes since X has the minimality condition. Cut the sequence again and then
consider the second letters, and so on. After `(vn) steps, we see that the original chain must stabilize,
contradicting the assumption.

7



Lecture 3

Free Semigroup Algebras
Let F be a field and S be a semigroup, we can consider the semigroup algebra on S,

FS := {α1s1 + · · ·αnsn}.

Remark 2.1
Unlike building a ring on an abelian group, here the operation of the semigroup induces the
multiplication in the algebra, instead of the summation.

Given any set X, we can consider the free associative F -algebra on the set of free generators X

F 〈X〉 := FX∗ := {α1ω1 + · · ·+ αnωn | αi ∈ F, ωi ∈ X∗}.

Note that F 〈X〉 is a unitary algebra, since the empty word lies in X∗. It enjoys the following universal
property:

Proposition 2.5. Universal Property of Free Associative F -algebra

For any F -algebra A and an arbitrary mapping ϕ : X → A, ϕ uniquely extends to a homomorphism
of F -algebras ϕ : F 〈X〉 → A.

Consider the case where A is generated by {aj}j∈J , X := {xj}j∈J and ϕ : xj 7→ aj , then the induced
homomorphism ϕ : F 〈X〉 → A is surjective, giving A ∼= F 〈X〉/I where I = kerϕ.

Let R ⊂ F 〈X〉, we say that R generates I as an ideal if I is the smallest ideal containing R, or
equivalently,

I =

∑
j

ajιjbj | aj , bj ∈ F 〈X〉, ιj ∈ R

 .

Similar as the presentation of semigroups, when A ∼= F 〈X〉/I and I is generated by R, we may write

A = 〈X | R = 0〉.

Also similarly, finitely presented is defined and can be proved to be well-defined.

§3 Reduction to Irreducible Elements
The same undecidable word problem exists for presentations of algebras, but we do have some algo-

rithm under certain conditions:
Keep the notations above. Now suppose X is (totally) ordered and satisfies the minimality condition.

For an element r ∈ R, it can be written as

r = α1ω1 + · · ·+ αnωn,

with αi 6= 0 and ωi ∈ X∗ are distinct words. The maximal element among ω1, · · · , ωn, r̄ := ωi =
max(ω1, · · · , ωn), is called the leading monomial of r, and its coefficient αi is called the leading coefficient
of r. In A, we have r = 0, which gives the following relation:
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αiωi = −
∑
j ̸=i

αjωj ⇒ ωi = −
∑
j ̸=i

αj
αi
ωj .

Definition 3.1. Reducible Word

A word v ∈ X∗ is called reducible if it contains a leading monomial r̄ of some r ∈ R as a subword,
i.e. v = v′r̄v′′ for some v′, v′′ ∈ X∗.

Therefore if v is reducible, then in A, v =
∑
k αkuk, αk ∈ F , uk < v. This means that v can be

reduced into a sum of “smaller” words.

Definition 3.2. Irreducible Word

A word is irreducible if it is not reducible.

Let us denote by Ir ⊂ X∗ the set of all irreducible words.

Proposition 3.1. Irreducible Words Span the Algebra

Ir spans A.

Proof. The result follows immediately by the reduction of reducible words and the minimality condition.

Gröebuer-Shirshov Bases
We wish to use Ir as a basis of A, which would solve our undecidable word problem in this case

completely since we can reduce any element in A to a linear combination of irreducible words within
finitely many steps. Hence the following question arises:

Question

When is Ir linearly independent in A?

Definition 3.3. Composition of Words

We say that two words v, w admit a composition if the end of one of these words equals the
beginning of the other one, e.g. v = x3x5x1 and w = x5x

2
1x4 admit a composition, or one of these

words is a subword of the other one.

Suppose that f, g ∈ R and the leading coefficients of f and g are 1. Suppose that f̄ , ḡ admit a
composition, i.e. they can be pieced together to get a word w as the following illustrates:

We define the composition of f and g, (f, g)w, as

(f, g)w = fv − ug or f − u′gu′′,

respectively to the two cases in the picture. Note that there may be several different choices of w
associated to f and g, for example, axyxb and axyxyxb are both available w’s of f = axyx and g = xyxb.

Theorem 3.2. Gröebuer-Shirshov Bases

Ir is a basis of A if and only if for any two relations f, g ∈ R that admit a composition, all these
compositions (f, g)w reduce to 0 (in the free algebra) (instead of a nontrivial linear combination
of irreducible elements).
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By “reduce” we mean to substitute reducible words by the sum of smaller words given by the relations
in R and obtain a new element in F 〈X〉 which is “closer” to a sum of irreducible words, and so on, until
we get a linear combination of irreducible words (or 0).

The basis Ir found in this way is called the Gröebuer-Shirshov basis.

Remark 3.1. Reformulation of Reduction
The procedure of reduction can be reformulated as the following: An element r ∈ R is of the form
r = r̄ − r′. A word vr̄u is equal to v(r + r′)u = vru + vr′u in the free algebra, which lives in
vr′u+I(R). By passing through such equalities, any element is a linear combination of irreducible
words whose leading monomial is smaller than the original one of the element, plus I(R). The
“old version” of reduction differs with this reformulation in the sense that it erases elements in
I(R). So far we can conclude that a necessary condition for R to be closed under composition
(i.e. for any f, g ∈ R, (f, g)w reduces to 0) is that for any f, g ∈ R, we can write in the free algebra
(f, g)w =

∑
j αjvjrjuj with αj ∈ F , vj , uj ∈ X∗, rj ∈ R and vj r̄juj < w for all j.

Exercise 3.1
Show that the necessary condition above for R to be closed under composition is in fact sufficient.

Remark 3.2
A consequence of this theorem is that it does matter how we reduce words, since different non-
trivial linear combination of irreducible words would be distinct.

One direction is easy: (f, g)w is always 0 in A since f = g = 0 in A and the procedure of reduction gives
equality in A. Hence if (f, g)w does not reduce to 0, then we obtain that a nontrivial linear combination
of irreducible words equals 0 in A, indicating that Ir is not linearly independent in A.

The other direction is straightforward, but is long and uninteresting. Before the complete proof, let
us go through some examples of applications of the theorem:

Applications of Gröebuer-Shirshov Bases

Example 3.1

Consider 〈x, y | yx− xy = 1〉 with order x < y. There is nothing to compose, and the irreducible
words are words of the form xiyj , which form a basis by the theorem. This algebra is isomorphic
to the Weyl algebra, the algebra generated by y = d

dt and x = t seen as linear operators on the
space of differentiable functions.

Example 3.2

Consider 〈x, y, z | [x, y] = z, [z, y] = 2y, [z, x] = −2x〉 with order x < y < z, where [a, b] := ab− ba.
The relations give the following reductions

yx→ xy − z

zy → yz + 2y

zx→ xz − 2x

Now that the first two elements admit a composition: zy−yz−2y and yx−xy+z. The composition
is

(zy − yz − 2y)x− z(yx− xy + z) = −yzx− 2yx+ zxy − z2.

The reduction goes:

→− y(xz − 2x)− 2(xy − z) + (xz − 2x)y − z2

=− yxz + 2yz − 4xy + 2z + xzy − z2

→− (xy − z)z + 2(xy − z)− 4xy + 2z + x(yz + 2y)− z2 = 0.

Since these are the only two elements in the relation that admit a composition, we see by theo-
rem 3.2 that the irreducible words xiyjzk form a basis.
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Lecture 4

Example 3.3

This example shows that the order on X matters. Consider 〈x, y | y2x− xyx = 0〉. When x < y,
the leading word is y2x and there is no nontrivial composition with itself; when y < x, the leading
word is xyx, which admits a nontrivial composition with itself, xyxyx. The first order, by the
theorem, shows that the irreducible words (in that order) form a basis of A. However, for the
second order we have nontrivial composition

(f, f)xyxyx = (xyx− y2x)yx− xy(xyx− y2x) = −y2xyx+ xy3x.

The relation gives reduction

xyx→ y2x,

Hence the above composition reduces to

−y4x+ xy3x,

which is a nontrivial linear combination of irreducible words, showing that the irreducible words
(in this order) are not linearly independent.

The next example is about Lie algebras. Let us briefly recall some definitions.

Definition 3.4. Lie Algebra

A Lie algebra L is a vector space with a bilinear operation [·, ·] : L× L→ L that satisfies

(1) (Antisymmetry) [a, b] = −[b, a];

(2) (Jacobi identity) [[a, b], c] + [b, c], a] + [[c, a], b] = 0,

for any a, b, c ∈ L.

Clearly, a homomorphism of Lie algebras is defined as a linear map that commutes with the brackets.

Definition 3.5. Representation of Lie Algebra

A representation of a Lie algebra L is a homomorphism of Lie algebras ϕ : L → A(−), where A
is an associative algebra and A(−) is the Lie algebra obtained by equipping A with the bracket
[a, b] = ab − ba. A homomorphism of representations of L is a homomorphism of Lie algebras
A(−) → B(−) that makes the following triangle commutes.

A(−) B(−)

L

A representation of L is called universal if it is initial in the category of representations of L.

Note that for a Lie algebra L there may not exists an algebra A such that L = A(−).
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Lemma 3.3. Image of Lie Algebra Generates Universal Enveloping Algebra

Let u : L→ U (−) be a universal representation of L. Then U is generated by u(L) as an associative
algebra.

Proof. Let 〈u(L)〉 be the associative algebra generated by u(L), then u : L → 〈u(L)〉(−) is also a repre-
sentation of L. The universality gives a homomorphism of representations of L,

U (−) → 〈u(L)〉(−),

which is identical to the identity when restricted on 〈u(L)〉; in particular it is surjective. Note that
the inclusion 〈u(L)〉(−) ↪→ U (−) is also a homomorphism of representations of L. The composition
U (−) → 〈u(L)〉(−) ↪→ U (−) gives a homomorphism of representations of L, which must be the identity on
U (−), implying that U (−) → 〈u(L)〉(−) is injective. Therefore U = 〈u(L)〉.

The initial property gives immediately that

Proposition 3.4. Uniqueness of Universal Enveloping Algebra

If a universal representation exists then it is unique up to isomorphism.

Moreover, in this case, the existence is true:

Proposition 3.5. Existence of Universal Enveloping Algebra

The universal representation of a Lie algebra L always exists.

Proof. Let {ei}i∈I be a basis of L (for infinite-dimensional L, use the Hamel basis), then we have

[ei, ej ] =
∑
k

γkijek,

for some γkij ∈ F for any i, j ∈ I. Write X = {xi}i∈I and consider

U := 〈X | xixj − xjxi −
∑
k

γkijxk = 0〉.

The homomorphism ϕ : L → U (−) defined by ei 7→ xi gives the universal representation, as one can
verify.

Note that ϕ is never surjective, because ϕ(L) = spanF {xi | i ∈ I} ⊊ U since U 3 xixj 6∈ spanF {xi |
i ∈ I}. Let us call the unique U in the universal representation of L as the universal enveloping algebra
of the Lie algebra L.

Example 3.4

Example. Consider the famous Lie algebra sl2(F ) := {2 × 2 matrices with zero trace}. It has
basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)

[e, f ] = h, [f, h] = 2f, [e, h] = −2e.

Its universal enveloping algebra is exactly 〈x, y, z | [x, y] = z, [y, z] = 2y, [x, z] = −2x〉, which has
been discussed in example 3.2.

Poincaré-Birkhoff-Witt Theorem
Let R = {xixj − xjxi −

∑
k γ

k
ijxk | i, j ∈ I} and introduce any order on I with the minimality

condition, which always exists provided the Axiom of Choice.
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Theorem 3.6. Poincaré-Birkhoff-Witt

R is closed with respect to compositions, i.e., for any f, g ∈ R, (f, g)w reduces to 0. And the
irreducible words {xi1 · · ·xik | i1 ≤ · · · ≤ ik} form a basis of U = 〈X | R = 0〉.

Proof. See the next lecture.

Corollary 3.6.1. Lie Algebra Embeds Into Universal Enveloping Algebra

Let ϕ : L→ U (−) be the universal representation of L, then ϕ is an embedding.

Proof. For any
∑
i αiei 6= 0 in L, it is mapped by ϕ to

∑
i αixi in U , which is a non-trivial linear

combination of irreducible words, hence is nonzero by Poincaré-Birkhoff-Witt Theorem.
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Lecture 5

Proof of the Poincaré-Birkhoff-Witt Theorem
We first show that R is closed with respect to compositions. Write {xi, xj} :=

∑
k γ

k
ijxk, then

spanF {xi | i ∈ I} with this bracket is a Lie algebra that is isomorphic to L. In particular, the bracket
{·, ·} satisfies the Jacobi identity. Any two elements in R that admits a nontrivial composition are of the
form

xjxi − xixj − {xj , xi},
xkxj − xjxk − {xk, xj},

where i < j < k. Their composition is

(xkxj − xjxk − {xk, xj})xi − xk(xjxi − xixj − {xj , xi})
=− xjxkxi − {xk, xj}xi + xkxixj + xk{xj , xi}
→− xj(xixk + {xk, xi} − {xk, xj}xi + (xixk + {xk, xi})xj + xk{xj , xi}
=− xjxixk − xj{xk, xi} − {xk, xj}xi + xixkxj + {xk, xi}xj + xk{xj , xi}
→− {xj , xi}xk − xj{xk, xi}+ xi{xk, xj}+ {xk, xi}xj + xk{xj , xi}
=[{xi, xj}, xk] + [{xk, xi}, xj ] + [{xj , xk}, xi]
→{{xi, xj}, xk}+ {{xk, xi}, xj}+ {{xj , xk}, xi} = 0,

where [·, ·] denotes the commutator, i.e., [a, b] = ab − ba. This ends the first part. Keep in mind that
the above procedure, though looks complicated, can be done automatically by a computer with only one
single click of a button.

The following displays one reason why the universal enveloping is important. Recall that if L is a Lie
algebra and V is a vector space, then a homomorphism L → LinF (V )(−) : a 7→ Ta defines an action of
L on V , and we have T[a,b] = TaTb − TbTa. Lifting this homomorphism to U (−) → LinF (V )(−), we then
obtain a homomorphism of associative algebras U → LinF (V ).

Joke
Associative algebras are in general easier to deal with than Lie algebras. However, the above
procedure is still a trade off of difficulties: even if L is finitely dimensional, U is infinite dimensional.
This displays the law of conservation of difficulty.

The rest of the Poincaré-Birkhoff-Witt Theorem follows from the other direction of the theorem 3.2,
which we are now going to prove.

Proof of the Groöebuer-Shirshov Bases Theorem
Before the proof, let us briefly recall the statement of the theorem:

Theorem. Groöebuer-Shirshov Bases

Ir is a basis in A if and only if for any two relations f, g ∈ R that admit a composition, all these
compositions (f, g)w reduce to 0.

Proof. Recall that the necessity has been proved right after theorem 3.2. For the other direction, we show
that for any nonzero f ∈ I(R) the leading monomial f̄ is reducible, hence a nontrivial linear combination
of irreducible words is never zero modulo I(R), implying the linear independence of irreducible words.

For any f ∈ I(R), we can write f =
∑
i αiuirivi for finitely many αi ∈ F \ {0}, ui, vi ∈ X∗ and

ri ∈ R; note that ui and vi are words, while ri’s are linear combinations of words.
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Note that we have uirivi = uir̄ivi. Write w := maxi{uirivi} and define for convention

S := {i ∈ I | w = uirivi}.

If #S = 1, then f̄ = w is reducible and we are done.
If #S > 1, it may occur that

∑
i∈S αiw = 0 so that f̄ 6= w. To resolve this problem we use induction

on (w,#S) ∈ I(R) × N∗, where I(R) denotes the set of leading monomials of elements in I(R) and
I(R)×N∗ is equipped with the lexicographical order that compares w firstly and then #S, which satisfies
the minimality condition.

Since for #S = 1 the statement is true no matter what w is, the initial condition is satisfied and we
can proceed by induction, supposing that #S > 1 and that the statement is true for all pairs less than
(w,#S).

Now that #S > 1, so there exists i 6= j with uir̄ivi = uj r̄jvj = w. We have

αiuirivi + αjujrjvj = (αi + αj)uirivi + αj(ujrjvj − uirivi).

The left hand side attributes 2 elements to S. For the right hand side, (αi + αj)uirivi attributes 1 or 0
denpending on whether αi+αj is zero. If we can show that ujrjvj−uirivi is of the form ujrjvj−uirivi =∑
k βku

′
kr

′
kv

′
k with maxk{u′kr′kv′k} < w, then by replacing the left hand side by the right hand side in the

summation f =
∑
i αiuirivi, we obtain a new summation that expresses f where either #S is smaller

(while w is fixed) or w is smaller (while whatever #S becomes), consequently we are done by the induction.
Therefore, for our purpose, there are now three cases to discuss:

1. r̄i and r̄j do not intersect in w, i.e. (up to a permutation) w = uir̄icr̄jvj where c ∈ X∗, hence we
have vi = cr̄jvj and uj = uir̄ic.

2. r̄i and r̄j intersect, but no one is contained by the other.

3. one of r̄i and r̄j is contained by the other.

Below gives the illustration of these three cases along with the notations that we will use later in our
proof.

Let us keep the notation that ri = r̄i − r′i (and similarly for rj) in the following.
For Case 1, we have

ujrjvj − uirivi =uir̄icrjvj − uiricr̄jvj

=ui((ri + r′i)crj − ric(rj + r′j))vj

=ui(r
′
icrj − ricr

′
j)vj = uir

′
icrjvj − uiricr

′
jvj .

Since max{uiricrjvj , uiricr′jvj} < uiricrjvj = w, we obtain the result as desired.
The other two cases will be discussed in the next lecture.
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Lecture 6

Now for Case 2, keeping the notations in the illustration above, we have

ujrjvj − uirivi =uiurjvj − uirivvj

=ui(urj − riv)vj

=− ui(ri, rj)ur̄j=r̄ivvj .

Recall that by remark 3.1, we have (f, g)w =
∑
k αkvkr

′
kuk with vkr̄kuk < w for all k for any f, g ∈ R,

let f = ri, g = rj and w = ur̄j = r̄iv then we are done.
The argument for Case 3 goes similarly.

Exercise 3.2
Finish the rest of the proof for Case 3.

Gröebuer-Shirshov Bases For Semigroups
Let us call a finite presentation 〈X | R〉 (either for semigroups or for algebras), where X is equipped

with an order with the minimal condition, a reduction system.
A reduction system is confluent, if for every word in it, the result of reduction of the word is irrelevant

to the choice of how the reduction is applied.
With this definition, the theorem which we just proved can be reformulated as that, for algebras,

a reduction system is confluent if and only if R is closed under composition. The following lemma by
Newman tells essentially the same thing for semigroups:

Lemma 3.7. Newman

For semigroups, a reduction system S = 〈X | ui = vi〉 with ui > vi is confluent if and only if for
any ui and uj such that v′uj = uiv

′′ for some v′, v′′ ∈ X∗, v′vj and viv′′ has the same descendant,
i.e. they reduce to a same word after finitely many steps of reductions.

Note that in a reduction system of a semigroup, every word can be represented by a irreducible word.
The above gives a necessary and sufficient condition for all irreducible words to be different. If this
condition is satisfied, then we call the irreducible words as normal forms, and we conclude that every
word can be reduced to a unique normal form.

§4 Further Applications of Gröebuer-Shirshov Bases
Let us give two general and important examples of algebras where the algorithm of reduction applies:

graded algebras and commutative algebras.

Graded Algebras
Let A = ⊕∞

i=1Ai be a graded algebra with A0 = F and A = 〈A1〉. Furthermore, we assume that
dimF Ai <∞ for all i, so that A is finitely generated as an algebra (by a basis of A1).

Note that for homogeneous f and g, their composition (if exists) (f, g)w is also homogeneous and we
always have deg(f, g)w > max{deg f, deg g}, where deg 0 is ∞ by convention.

Let A = 〈X | R = 0〉 be a finite presentation where every relation in R is homogeneous. Define an
order with the minimality condition on X so that we obtain a reduction system. Write R0 := R. Define
inductively that
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Rn := Rn−1 ∪ {(f, g)w | f, g ∈ Rn−1},

i.e., Rn is Rn−1 union all possible compositions of elements in Rn−1. Since R0 is finite, each Rn is also
finite.

Write R∞ :=
⋃∞
i=0Ri, then A = 〈X | R = 0〉 = 〈X | R∞ = 0〉, since if f, g ∈ R, then (f, g)w =

fv − ug ∈ I(R), where I(R) is the ideal generated by R.
Now that R∞ is closed under composition, so the Groöebuer-Shirshov bases theorem applies and we

see that the set of irreducible words (with respect to R∞) is a basis of A.
Although R∞ might contain infinitely many elements, we still have an algorithm for reduction in this

case: for any elemen a in A, there must exists N ∈ N such that every element in R∞ \ RN is of degree
strictly larger than the degree of any homogeneous component of a, because, by the construction, the
minimal degree of elements in R∞ \ Rn strictly increases as n increases. Therefore to reduce a into a
linear combination of irreducible words, we need only check the reduction relations in RN , where there
are only finitely many of them.

Commutative Algebras
Let A be a finitely generated commutative algebra, then we can find a surjective homomorphism

ϕ : F [x1, · · · , xn] ↠ A,

so that A ∼= F [x1, · · · , xn]/ kerϕ.
Recall the following lemma by Hilbert, which is a standard result in commutative algebra, c.f. Corol-

lary 2.13 in [GTM256]:

Lemma 4.1. Hilbert

Every ideal of a polynomial ring F [x1, · · · , xn] is finitely generated.

Therefore every finitely generated commutative algebra admits a finite presentation, e.g. let r1, · · · , rm
be a set of generators of kerϕ, then A = 〈x1, · · · , xn | ri = 0〉.

Let us now define the composition of two elements in a polynomial ring F [x1, · · · , xn].
Without loss of generality, let the generators be ordered as x1 > · · · > xn. To compare two monomials,

we compare firstly their degrees, then the numbers of powers of x1, and then the numbers of powers of
x2 and so on (i.e. from the largest generator to the smallest generator). Given a polynomial f , we define
its leading monomial f̄ as the largest monomial among all of its monomials.

Now for any two polynomials f, g ∈ F [x1, · · · , xn], we say that they are composable if their leading
monomials have a non-constant common divisor, i.e. an element d ∈ F [x1, · · · , xn] \ F such that f̄ = ad
and ḡ = bd for two elements a, b ∈ F [x1, · · · , xn]. The composition of f and g with respect to this
common divisor is thus defined as

(f, g)abd := bf − ag.

Similar to definition 3.1 and definition 3.2, reducible monomials and irreducible monomials are defined,
and a similar argument shows that the Groöebuer-Shirshov bases theorem in this case is also true.

Now that given a commutative algebra A along with a finite presentation A = 〈X | R = 0〉, we want
to apply the Groöebuer-Shirshov bases theorem to it to obtain a basis of A along with an algorithm
of reduction. Like what we did for graded algebras, we would like to consider R0 := R and then add
compositions of elements in Rn−1 to obtain Rn, while seeking for a way to obtain an algorithm. For this
purpose, we consider the following proposition:

Proposition 4.2

Among every infinite set of monomials of finitely many variables, there exists two (distinct)
monomials that one divides the other one.

Proof. Let us proceed by induction on the number of variables. It is trivial when there is only one
variable.

Suppose that the statement is true for n − 1 variables. Let us identify monomials in n variables
bijectively to elements in Nn, hence we say that a monomial (i1, · · · , in) divides another monomial
(j1, · · · , jn) if and only if ik ≤ jk for all k = 1, · · · , n. Suppose we have an infinite set of monomials S in

17



which no monomial divides another one, then among all the corresponding tuples of the monomials, we
find a tuple whose first index is the smallest, say (i′1, · · · , i′n) with i′1 ≤ i1 for all other tuples (i1, · · · , in).
For any other element (i1, · · · , in) ∈ S, there must be ik < i′k for some k = 2, · · · , n, hence if we define
Sk := {(i1, · · · , in) ∈ S | ik < i′k}, then there must be

S = {(i′1, · · · , i′n)} ∪

(
n⋃
k=2

Sk

)
.

Therefore one of Sk’s must be infinite (since S is). Up to a relabelling let us say that S2 is infinite. Write
Tl := {(i1, · · · , in) ∈ S | i2 = l}, then we have

S2 =
⋃

0≤l≤i′2−1

Tl.

Again, there must exist an l ∈ {0, · · · , i′2−1} such that Tl is infinite. Now that the second index of elements
in Tl is the constant l, hence there exists two n-variable monomials in Tl that one divides the other if and
only if there exists two (n− 1)-variable monomials in T ′

l := {(i1, i3, · · · , in) | (i1, i2, i3, · · · , in) ∈ Tl} that
one divides the other. By our induction assumption we see that there exists two monomials in Tl ⊂ S
that one divides another, contradicting the definition of S.

With this proposition, there must exist an N ∈ N such that the leading monomial of any element in
R∞ \RN is divisible by the leading monomial of some element in RN . Noticing that elements in R∞ \RN
do not give any new reducible word other than those are given by RN , we see that R∞ and RN define a
same set of irreducible words. Therefore every element in A can be reduced to a linear combination of
irreducible words using only the relations in RN . By theorem 3.2, since R∞ is closed under compositions,
the set of irreducible words does give a basis of A. Since we need only the finitely many relations in RN
to operate the reduction, we obtain an algorithm. These fulfill our purpose completely.

Remark 4.1
This result for commutative algebra is called Buchberger’s theorem, or Buchberger’s algorithm.
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Lecture 7

Let us now look at the number of steps that we need to reduce a word in a reduction system of a
semigroup.

§5 Dehn function
In a reduction system (whether confluent or not), we say that two words are equivalent if they are

congruent, i.e. they have the same descendent. This means that two congruent words can be transformed
to each other by finitely many steps of substituting the relations, say.

u = w1 ∼ w2 ∼ · · · ∼ wr = v.

Given two congruent words u and v, we denote by ‖u×v‖ the length of the smallest chain of substitution
that we need to go through to transform u into v.

The Dehn function D : N → R>0 of a reduction system of a semigroup is now defined by

D(n) := max{‖u× v‖ | u, v are equivalent with lengths no more than n}.

The maximum always exists since there are only finitely many u and v for a fixed n. Clearly, the Dehn
function gives a measurement of the complexity of a system.

Given two functions f, g : N → R>0, we say that f is asymptotically less or equal to g, denoted as
f � g, if there exists C ∈ N such that

f(n) < Cg(Cn), ∀n ∈ N.

If f � g and f � g, then we say that f and g are asymptotically equivalent, denoted by f ∼ g.

Theorem 5.1. Dehn Functions Are Asymptotically Equivalent

Given two finite presentations of a semigroup, their corresponding Dehn functions are asymptoti-
cally equivalent.

Proof. Let 〈X | R〉 ∼= 〈Y | R′〉 be two finite presentations, then any generator yi ∈ Y can be written as
a word yi(x) in X. Since there are only finitely many generators in Y , we can find an upper bound C of
the lengths {lengthX(y) | y ∈ Y }. For any two words u = v with lengths less than n in Y , their lengths in
X are thus less than Cn. Also, for each relation in R′, it may be achieved by finitely many compositions
of relations in R; since there are only finitely many relations, we may enlarge our C so that the number
of needed compositions for each relation is always less than C. These give us

‖u× v‖Y ≤ CDX(Cn).

Take the maximum of the left hand side and then we obtain DY (n) ≤ CDX(Cn).

Therefore we may think Dehn function as an equivalence class of functions corresponding to a semi-
group, regardless of the choice of presentations.

In a confluent reduction system, let us denote by γmin(v) the minimum time of reduction that is
needed to reduce v to its normal form and by γmax(v) the maximum time of reduction. Note that by
considering the time of reduction, we are requiring that each step gives a smaller word so that we cannot
substitute a same relation back and forth, hence the maximum time is well-defined.

By linking two equivalent words with their normal form, which is a same irreducible word in a confluent
reduction system, we see that
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‖u× v‖ ≤ γmin(u) + γmin(v).

Note that we have by definition that

γmin(u) = ‖u× ũ‖,

where ũ denotes the normal form of u. Since the normal form of a word has length no longer than that
word, we see that the Dehn function is asymptotically equivalent to the function γ : N → R>0 defined by

γ(n) := max{γmin(u) | length(u) ≤ n}.

Let us take a look at some examples where we can compute the Dehn function.

Example 5.1

Consider 〈x, y | xy = yx〉 with x < y. Clearly the irredcubile words are words of the form xiyj .
We can relate words in this system with 2-dimensional graphics: given any word, we start from
the origin, and read each letter in the word from the left to the right. Each time we read x, we
go right for a unit length, and each time we read y, we go up for a unit length. For example, the
word x2yxy2 relates to the following graph:

Below the graph and the horizontal axis there is a region which is shadowed in the illustration. Let
us call the area of the shadowed region the area of the word, say, the area of x2yxy2 is 1. We see
that the irreducible words are exactly the words of 0 area, and each time we apply the reduction
yx→ xy to a word, its area goes down by 1. Therefore, in this case, γmax(u) = γmin(u) = Area(u).
For a word of length n, its area is at maximum

(
n
2

)2, therefore we conclude that the Dehn function
of this system is asymptotically equivalent to n2.

Example 5.2

Consider 〈x1, · · · , xm | xixj = xjxi, 1 ≤ i, j ≤ m〉 with x1 < · · · < xm. Write a word as
v = xi1 · · ·xin , we can define its area as

Area(v) := #{(k, l) ∈ {1, · · · , n}2 | xik > xil , k < l}.

For example, Area(x3x2x2x1) = 3+1+1 = 5. Again, each reduction reduces the area by 1, hence
the Dehn function is asymptotically equivalent to the maximum area. For a word of length n, its
area is bounded above by n2 by definition. Also, since Area(x

n/2
m x

n/2
1 ) =

(
n
2

)2, the maximum area
is bounded below by

(
n
2

)2. These conclude that the Dehn function of this system is asymptotically
equivalent to n2.

In general, if we can define the area of the words in a system in a way that the irreducible words
are exactly those of area 0 and each step of reduction reduces an area that is bounded uniformly, i.e.,
irrelevant to whatever the word is, then we can estimate the Dehn function of the system. For example,
if in a reduction system the reductions always reduce an area more than ε1 and less than ε2, i.e. for any
word wuw′ and relation u = v with u > v in that system, we have

Area(wvw′) + ε1 < Area(wuw′) < Area(wvw′) + ε2,

then the number K of required steps to reduce a word w is among [Area(w)/ε2,Area(w)/ε1]. Let
A(n) := maxlength(w)≤n{Area(w)}, then the Dehn function is estimated by
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D(n) ∈ [A(n)/ε2, A(n)/ε1].

In particular, the Dehn function is asymptotically equivalent to the maximum-area function A.

Remark 5.1
Although one can define the Dehn function similarly for reduction systems of algebras in a naive
way, the situation for algebras is more complicated and has been remained undecided. Say, let
us define D(n) as the maximum of the minimum number of steps of reduction for reducing an
element in which each monomial has length no more than n. Since there are only finitely many
generators, there are only finitely many monomials of length no more than n and finitely many
ways to reduce even if we take the factorization into consideration, so the Dehn function is well-
defined. However, when it comes to decide a way to reduce, the question becomes complicated:
if we reduce the monomials term by term, then we may be too slow (at least mn) compared to
the real Dehn function; if we want to factorize firstly and then reduce, then how should we decide
how to factorize? For example, the algebra 〈x, y | x2 = 0〉. It is very simple: once you see x2
you kill that term. However, it may still cost about mn steps to reduce if we look term by term,
which means that the Dehn function defined above fails to measure the complexity of the system.
Maybe this can be solved when the quantum computer comes out, where we will be able to reduce
all the monomials at the same time for one single step.

Now let us end this chapter and move on to talk about the free groups.

§6 Free Groups
[Zelmanov introduced the definition, uniqueness and construction of free group which are not
taken down here; for these things, see for example Chapter II, Section 5.1~5.3 of [Chapter0].]

In short, let X = {xi}i∈I be a set of generators and Y = {yi}i∈I is another set of generators with the
same index set I, then the following semigroup

〈X,Y | xiyi = 1, yixi = 1, i ∈ I〉,

is the free group generated by X, and it is a confluent system as one can verify using our previous theory.
The normal forms in the above semigroup are called reduced forms of the free group generated by X.
Explicitly, the reduced forms are

xε11 · · ·xεnn ,

where εi = ±1, xi ∈ X and we require that no subword is of the form xx−1 or x−1x. We will keep this
notation for reduced forms.

Let us denote the free group generated by X by F (X). If |X| = m < ∞, then we may write
F (X) = F (m). It is obvious that the free groups are always isomorphic if their sets of generators have a
same cardinality.

Question

For different cardinalities of the index, can the associated free groups be isomorphic? For example,
is a free group generated by n elements isomorphic to a free group generated by m elements if
n 6= m?

The answer is yes, for both finite and infinite cases. Here we only talk about the finite cases.
We may answer this question firstly for the abelian case:

[Zelmanov introduced the definition, uniqueness and construction of free abelian group which
are not taken down here; for these things, see for example Chapter II, Section 5.4 of [Chapter0].]

Proposition 6.1

Two finitely generated free abelian groups are isomorphic if and only if they are freely generated
by a same number of elements
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Proof. Recall that two finitely generated free abelian groups must be of the form Zn and Zm. If they are
isomorphic, say ϕ : Zn → Zm is an isomorphism, then we have

ϕ−1(2Zm) = 2ϕ−1(Zm) = 2Zn.

Therefore Zm/2Zm ∼= Zn/ϕ−1(2Zm) = Zn/2Zn by the first isomorphism theorem, see the diagram below.

Zn Zm

Zn/2Zn = Zn/ϕ−1(2Zm) Zm/2Zm

φ

∼=

Since Zn/2Zn ∼=
⊕n

i=1 Z/2Z, we thus obtain 2m = 2n, concluding that there must be m = n.
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Lecture 8

Let us recall some constructions in group theory.

• Given a group G, recall that the elements of the form [a, b] = a−1b−1ab are called the commutators.
Notice that ab = ba[a, b], hence in some way the commutator measures how far the elements a and
b are from being commutative. Note also that there is [a, b]−1 = [b, a].

• Recall that [G,G] the subgroup generated by all commutators in G is normal.

• Recall that Aut(G) is a group. For each element x ∈ G, we can define an automorphism g 7→ x−1gx
on G; automorphisms of such form are called inner-automorphisms. It is easy to verify that the set
of inner-automorphisms forms a normal subgroup of Aut(G); let us denote it as InAut(G). Let us
call the quotient group Aut(G)/InAut(G) the group of outter-automorphisms, which we denote by
OutAut(G).

• For an arbitrary normal group of G, the only thing we can say is that it is invariant under the
inner-automorphisms, but not all automorphisms. However, the commutator subgroup [G,G] is
invariant under all automorphisms on G (just check the generators).

• Recall that for any normal subgroup H of G such that G/H is abelian, we have [G,G] ⊂ H. Hence
we have that

[G,G] =
⋂

H�G, G/H abelian

H.

We are now ready to present the following lemma:

Lemma 6.2

F (m)/[F (m), F (m)] is the free abelian group of rank m, i.e. the free abelian group generated by
m elements.

Proof. Firstly we check that the quotient preserves that different xi’s in X to be distinct, i.e. we need to
check that x−1

i xj 6∈ [F (m), F (m)] for any i 6= j. Indeed, noticing that for any element in [F (m), F (m)],
the number of appearances of xi must be equal to the number of appearances of x−1

i . Hence we are done
for this part.

The rest of the proof is a straightforward verification of the fact that F (m)/[F (m), F (m)] satisfies the
universal property of the free abelian groups.

The result that F (m) ∼= F (n) if and only if m = n thus follows from the above lemma, the proof of
proposition 6.1 and the proposition itself.

Schreier Theorem
We now proceed to another result, that all subgroups of free groups are free.
Recall that for any subgroup H, we have G =

⊔
iHgi. Two elements x, y ∈ G lies in a same coset

Hgi if and only if xy−1 ∈ H. In each coset Hgi, let us select one representative with only one restriction
that for H we choose the identity 1; for any element g ∈ G, we denote by ḡ the representative that we
chose in the coset Hg. Let S be the set of all representatives.

Remark 6.1

It is easy to verify that āb = ab for any a, b ∈ G.
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Let X generate G and consider the elements of the form sxε(sxε)−1 where s ∈ S and x ∈ X. Note
that sxε(sxε)−1 ∈ H.

Lemma 6.3

The set {sx(sx)−1 | s ∈ S, x ∈ X} generates H.

Proof. Notice that we have that, since s = sx−1x (using remark 6.1),(
sx−1

(
sx−1

)−1
)
·
(
sx−1x

(
sx−1x

)−1
)

= 1.

It follows that sx−1
(
sx−1

)−1

∈ {sx(sx)−1 | s ∈ S, x ∈ X}.
Also, inspired by the above equality, we have the following algorithm: For any element h ∈ H, it has

reduced form h = xε1i1 · · ·xεnin . Since h = 1, we have

h =xε1i1 · · ·xεnin

=

(
1 · xε11

(
1 · xε11

)−1
)(

xε1i1 · xε2i2
(
xε1i1 · xε2i2

)−1
)
· · ·
(
xε1i1 · · ·xεn−1

in−1
· xεnin

(
xε1i1 · · ·xεnin

)−1
)
,

as desired.

Corollary 6.3.1

Let G be finitely generated group. Let H < G be a subgroup of G with |G : H| < ∞. Then the
group H is finitely generated.

Proof. Since |G : H| <∞, S is finite. Since G is finitely generated, X is finite. Therefore the generating
set of H given by lemma 6.3 is also finite.

More precisely, if |X| = m and |G : H| = n, then H is generated by no more than mn elements.
We now move back to discussions about free groups. In the following, let H be a subgroup of F (m).

Definition 6.1. Schreier System

We say that a set of representatives S of cosets of H in F (m) is a Schreier system if for any s ∈ S,
the reduced form s = xε1i1 · · ·xεkik satisfies that xε1i1 · · ·xεjij ∈ S for each j = 1, · · · , k.

Lemma 6.4. Existence of Schreier System

For any subgroup H < F (X), a Schreier system exists.

Proof. For any g ∈ F (X) with reduced form g = xε1i1 · · ·xεkik , we say that k is the length of g. The length of
the identity is defined to be 0. Given a coset C = Hg, the length of C is defined as min{length(a) | a ∈ C}.
We now proceed by induction on lengths.

Note that length(H) = 0, and H is the only coset with length 0. Suppose that for every coset
C of length less than n, we have selected a representative C̄ such that length(C̄) = length(C) and
C̄ satisfies the Schreier condition, i.e. if C̄ = xε1i1 · · ·xεkik then xε1i1 · · ·xεjij ∈ Hxε1i1 · · ·xεjij . Note that
length(Hxε1i1 · · ·xεjij ) = j, otherwise C̄ can be replaced by a shorter word. For a coset C of length n, there
exists some reduce form of length n, xε1i1 · · ·x

εin−1

in−1
xεnin ∈ C, and we define

C̄ := xε1i1 · · ·x
εin−1

in−1
xεnin ,

whose reduced form is of length n and satisfies the Schreier condition as desired.

Theorem 6.5. Shreiez

Let H < F (X) and S be a Schreier system corresponding to H. Then {sx(sx)−1 6= 1 | s ∈ S, x ∈
X} is a set of free generators of H.
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Proof. We show firstly that if a reduction happens when we put sxε and (sxε)−1 together for some s ∈ S,
x ∈ X and ε = ±1, then there must be sxε(sxε)−1 = 1. Let the reduced form of s be s = xε1i1 · · ·xεnin and
that of sxε be sxε = xδ1j1 · · ·x

δm
jm

, then

sxε(sxε)−1 = xε1i1 · · ·xεnin x
εx−δmjm

· · ·x−δ1j1
,

hence a reduction happens if either xεnin x
ε = 1 or xεx−δmjm

= 1. If xεnin x
ε = 1, then sxε = xε1i1 · · ·xεn−1

n−1 ∈
S by the Schreier condition, hence sxε = sxε, consequently sxε(sxε)−1 = 1. If xεx−δmjm

= 1, then
sxε = xδ1j1 · · ·x

δm−1

jm−1
xε. Write s1 := xδ1j1 · · ·x

δm−1

jm−1
, then s1 ∈ S by the Schreier condition, and we have

sxε(sxε)−1 = ss−1
1 . Therefore it suffices to show that ss−1

1 ∈ H, so that s and s1 live in a same coset
and thus s = s1. Indeed, we have

H 3 sxε(sxε)−1 = sxεx−εs−1
1 = ss−1

1 ,

done.
The rest of the proof will be given in the next lecture.
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Lecture 9

Continue of the Proof of Theorem 6.5. Consider a nontrivial reduced product in {sx(sx)−1 6= 1 | s ∈
S, x ∈ X},

s1x
ε1
1

(
s1x

ε1
1

)−1

· · · skxεkk
(
skx

εk
k

)−1

,

where by reduced we mean that no two adjacent sixεii
(
six

εi
i

)−1

cancel. It suffices to show that cancel-
lations won’t touch xεii ’s, so that no nontrivial reduced product is equal to 1, which implies the freeness.

By what we have shown in the beginning of the proof, no cancellation happens in the middle of sixi
nor xi

(
six

εi
i

)−1

, the only chance for anything to get cancelled lies in the middle of
(
six

εi
i

)−1

si+1. We
will check that such cancellation will not kill any of xεii and xεi+1

i+1 , which finishes the proof. It suffices to
do this for i = 1 for simplicity of notation.

Let us check xε11 firstly, assuming that xε22 is not killed. the only possibility is that s2 has reduced
form s2 =

(
s1x

ε1
1

)
x−ε11 · · ·. By the Schreier condition,

(
s1x

ε1
1

)
x−ε1 ∈ S. Since

(
s1x

ε1
1

)
x−ε11 = s1x

ε1
1 x

−ε1 = s1 = s1,

we obtain that
(
s1x

ε1
1

)
x−ε1 = s1. Therefore s1xε11

(
s1x

ε1
1

)−1

= 1, contradiction.

Then let us check xε2, assuming that xε11 is not killed. Again, the only chance is that
(
s1x

ε1
1

)−1

=

· · ·x−ε22 s−1
2 , hence s1xε11 = s2x

ε2
2 · · ·. By the Schreier condition, this means that s2xε22 ∈ S, therefore

s2x
ε2
2

(
s2x

ε2
2

)−1

= 1, contradiction.
Finally, let us check that xε11 and xε22 cannot be killed simultaneously. If they are killed simultaneously,

then xε11

(
s1x

ε1
1

)−1

s2x
ε2
2 = 1. Hence s2xε22 = s1x

ε1
1 x

−ε1
1 . Therefore

s1

(
s2x

ε2
2

)−1

= s1

((
s1x

ε1
1

)
x−ε11

)−1

= s1s
−1
1 = 1,

contradicting that the product is reduced.

We now obtain a set of free generators of H along with an algorithm, but the following question
remains:

Question

What is the cardinality of {sx(sx)−1 6= 1 | s ∈ S, x ∈ X}? That is to say, how many sx (sx)−1 is
equal to 1?

Suppose that |X| = m. Assuming the Schreier condition, the answer to the latter question is n − 1,
so that H is freely generated by mn− n+ 1 elements. (Recall that n is the cardinality of S.)

In fact, if sx (sx)−1
= 1, then a cancellation must happen in the middle of either sx or x (sx)−1.

Conversely, we have shown that if a cancellation happens then sx (sx)
−1

= 1. For each nontrivial
element s in S, its reduced form is s = xε11 · · ·xεkk . If εk = 1, then

(
sx−1
k

)
xks

−1 = 1. If εk = −1, then
sxk (sxk)

−1
= 1. By a simple argument using the Schreier condition, one sees that these two cases do

not give repeated pairs sx (sx)−1 ↭ (s, x) ∈ S × X. Therefore among the pairs (s, x) ∈ S × X, there
are exactly n− 1 pairs that lead to sx (sx)−1

= 1.
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A consequence of this result is that subgroups of a free group may have larger rank than the original
free group. In fact, a subgroup of a finitely generated free group may have rank infinity, see the second
set of exercises.

Note that this algorithm for computing generators of subgroups of free groups can be applied to
any (finitely generated) group: by sending the free generators to generators of the group, we obtain an
epimorphism F (m) ↠ G. For any subgroup H < G, the preimage of H gives a subgroup of F (m). Apply
the algorithm to that subgroup of F (m) to compute its generators, and then bring the generators to G,
and we obtain generators of H.

Cayley Graph of Group
Consider a group G = 〈a1, · · · , am〉 = 〈X〉, the cayley graph of G with respect to generators ai’s ,

denoted as Cay(G,X), is constructed by the following:

For each element in G we assign a vertice, thus vertices in the graph are identified with
elements in G. For each pair of vertices g and aig, we connect them with an edge.

In Cay(G,X), every element g = aε11 · · · aεkk is connected to the identity via

g − (aε22 · · · aεkk )− · · · − aεkk − 1.

Therefore the cayley graph is always connected.
By claiming that each edge has length 1 and that the distance between any two vertices is the minimal

length that one has to go through the edges, the cayley graph becomes a metric space. The space can be
also assigned a norm of length, by length(g) = d(g, 1).

A cycle in a graph is a loop without self-intersection. A graph without any cycle is called a tree. It is
easy to see the following characterization of freeness:

Proposition 6.6

Cay(G,X) is a tree if and only if G is a free group on free generators X.

Proof. It is easy to observe that a cycle exists if and only if a reduced word is trivial.

For any element a ∈ G, we can consider its action on the cayley graph M of G, by sending a vertice
g to ga, and edges g − aig to ga − aiga accordingly. Let us denote this action by Ra, then clearly Ra
preserves the distance, hence it is an isometry on M . Also, we have RaRb = Rba. Therefore the map
a 7→ Ra gives an embedding Gop ↪→ Isom(M). Note that every isometry on a graph preserves vertices,
because the vertices are exactly the points with integer lengths.

In general, we can define group actions on any metric space M : an action of G on M is a group
homomorphism G→ Isom(M).

With such action, we have another perspective of freeness. Recall that a fixed-point free action is an
action where the identity is the only element whose action has a fixed point.

Theorem 6.7. Serre

G is free if and only if there is a fixed-point free action of G on a tree.

Note that we do not require the tree in the theorem to be a cayley graph of some group. It can be an
arbitrary graph that is a tree.

If G acts freely on a tree, then any of its subgroup also acts freely on that tree. Therefore we obtain
again that every subgroup of a free group is free, from this perspective.

Below gives an example of a group acting on a tree:

Example 6.1. Rooted Tree

Consider the rooted tree, which is illustrated below:
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The dots indicate that the tree grows down indefinitely. The set of isometries on this tree is the
set of reflections of its branches (let the length of the top point be zero and check the length
of each vertex). The group of isometries naturally gives a group that acts on this tree. Every
isometry must preserve the top point since it is the only point jointed with only two edges, hence
no subgroup of this group of isometries is free.

We will talk about the rooted tree in detail in section 9.
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Lecture 10

Let us talk a little bit more about the word problem before proceeding.
Let us consider finitely generated groups. Say G ∼= F (m)/N , R ⊂ N generates N so that G = 〈X |

R = 1〉. The problem to determine whether two different words in F (m) are equal when brought to
G by quotienting by N is the famous word problem. The research into the word problem significantly
contributed to the development of computer science, in the sense that it made it clear what an algorithm
is. It was proved by P. Novikov (1959) that there exists a finitely presented group for which no computer
can ever exist that can decide whether an arbitrary word is equal to 1.

Still, we can have some discussion about this. Let us focus on the reduction of elements in N . Note
that we have

N = {(τg11 )±1 · · · (τgkk )±1 | τi ∈ R, gi ∈ F (m)},
where τg := g−1τg, the conjugation. Note that the conjugation indeed follows the rule of exponentiation:
(τg1)g2 = g−1

2 g−1
1 τg1g2 = τg1g2 .

Recall the definition of the Dehn function for semigroups in section 5. For groups, we can also define
the Dehn function: for any h ∈ N , let ‖h‖ denote the minimal possible k such that h = (τg11 )±1 · · · (τgkk )±1.
Then

D(n) := max{‖h‖ | h ∈ N,h ∈ B(n)},
where B(n) is the ball of radius n with center at 1, i.e. h ∈ B(n) means that h is a word of length no
more than n.

Exercise 6.1
Prove that the Dehn functions for different finite systems of a same object are asymptotically
equivalent.

In fact, noticing that a step of reduction τ → 1 is the same as a step toward writing h as the form
h = (τg11 )±1 · · · (τgkk )±1, one sees this immediately.

Example 6.2

Let us consider the group 〈x, y | x−1y−1xy = 1〉. Like what we did in example 5.1, for each word,
we start from the origin on the two-dimensional plane and look from left to the right. For each x,
we go right by a unit length, for x−1 we go left, y we go up and for y−1 we go down. Thus any
x−1y−1xy would give a unit square. For example, the word x2y2x−1y−2x−1 corresponds to the
following graph:

So let us set Area(x2y2x−1y−2x−1) := 2. For this particular example, each replacement
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yx−1y−1 → x−1 reduces the area by 1, hence it takes two steps to reduce the word x2y2x−1y−2x−1

to its normal form. It follows that the Dehn function is asymptotically no less than O(n2), because
it will take n2/16 steps (cancellation of inverse elements is not counted) to reduce the square given
by xn/4yn/4x−n/4y−n/4. Conversely, no element of length n can encircle a larger area than this
square. Therefore the Dehn function is asymptotically equivalent to O(n2).
More precisely, if one wishes to stick to the definition, then the procedure is translated as the
following:

x2y2x−1y−2x−1 =x2y2(x−1y−1xy)y−1x−1y−1x−1

=x2y2(x−1y−1xy)y−1(x−1y−1xy)y−1x−1x−1

=(x−1y−1xy)y
−2x−2

(x−1y−1xy)y
−1x−2

.

§7 Free Products

Free Products of Algebras
Let F be a field. Let A and B be two F -algebras (with identity, and not necessarily commutative).

The free product of A and B is the coproduct of A and B in the category of F -algebras, i.e. it is an
F -algebra U along with two homomorphisms ιA : A → U and ιB : B → U that satisfies the universal
property that for any other F -algebra C along with two homomorphisms ϕA : A → C and ϕB : B → C,
there exists a unique homomorphism ϕU : U → C such that ϕU ◦ ιA = ϕA and ϕU ◦ ιB = ϕB . See the
diagram below.

A B

U

C

ιA

φA

ιB

φB
φU

Assume for now that the free product always exists. Similar as we did for the universal enveloping
of Lie algebras, let U denote the free product of A and B with ιA : A → U and ιB : B → U , then U is
generated by the images of A and B, i.e. U = 〈ιA(A), ιB(B)〉.

The uniqueness of free product is, again, permitted by the universal property. We now prove that it
always exists:

Proposition 7.1

For any two F -algebras A and B, their free product exists.

Proof. Write A = 〈X | RA(X) = 0〉 and B = 〈Y | RB(Y ) = 0〉. Define

U = 〈X t Y | RA(X) = 0, RB(Y ) = 0〉,

then U is the free product of A and B with the obvious ιA and ιB , as one can check.

We can equip U with a more concrete system. Let {1, ai | i ∈ I} be a basis of A and X = {xi}i∈I .
We have for any i, j ∈ I,

aiaj = γ0ij1 +
∑
k

γkijak,

for some γkij ∈ F . Then the set RA(X) = {xixj − γ0ij1−
∑
k γ

k
ijxk | i, j ∈ I} is closed under composition:

we have

0 =

(
aiaj − γ0ij −

∑
k

γkijak

)
al − ai

(
ajal − γ0jl −

∑
k

γkjlak

)
= · · · (progress of reduction) = (linear combination of ak’s )

The basis condition then forces the coefficients to be all zeros. Replace the a’s by x’s and we see that
RA(X) is closed under composition. Similarly RB(Y ) is defined. Since no relation from RA(X) admit any
composition with relations in RB(Y ), RA(X) and RB(Y ), put together, is still closed under composition.
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Therefore the map ιA : A → U , sending nontrivial linear compositions of {1, ai} to nontrivial linear
compositions of {1, xi} which are irreducible in 〈X t Y | RA(X), RB(Y )〉, is injective. The same is true
for ιB . We thus obtain the following lemma.

Lemma 7.2

ιA and ιB are embeddings.

Notation 7.1
Let A ∗B denote the free product of A and B.

With the above system, we have shown that the irreducible words of A ∗ B form a basis, which are
exactly

{1, c1 · · · ck | (cl ∈ {ai} and cl+1 ∈ {bj}) or (cl ∈ {bj} and cl+1 ∈ {ai}) for each l = 1, · · · , k − 1},

where {1, ai} and {1, bj} are the chosen basis of A and B respectively.
The free product for an arbitrary (set-valued) collection of F -algebras is defined similarly; it is just

the coproduct in the categorical viewpoint. All constructions and arguments above pass immediately,
giving exactly the same results. Also, we have the law of associativity, i.e. (A ∗ B) ∗ C ∼= A ∗ (B ∗ C);
indeed, this law would follow immediately from a diagram chasing.

Free Products of Groups
Similarly, the free product of groups are defined as the coproduct in the category of groups. All

arguments in the previous section pass to groups easily (including the presentation for the free product)
except for the concrete system given after proposition 7.1. But we can still find a such system by bringing
the question back to algebras:

Let F be a field. For any groups G1, G2 and G, group homomrphisms ϕ : G1 → G and ψ : G2 → G,
we have homomorphisms of F -algebras

Fϕ : FG1 → FG, Fψ : FG2 → FG.

The free product of F -algebras gives us a unique homomorphism Fϕ ∗ Fψ : FG1 ∗ FG2 → FG such
that the diagram commutes. Since G1 and G2 are basis of FG1 and FG2 respectively, our previous result
tells that the set

{1, c1 · · · ck | (cl ∈ G1 \ {1}, cl+1 ∈ G2 \ {1}) or (cl ∈ G2 \ {1}, cl+1 ∈ G1 \ {1}), l = 1, · · · , k − 1},

forms a basis of FG1 ∗ FG2. Noticing that the set along with the multiplication is a group, the claim
is that this group (with the obvious embeddings of G1 and G2) is exactly the free product of G1 and
G2; let us denote it by G1 ∗ G2. Indeed, the uniqueness of the morphism that makes the coproduct
diagram commutes is permitted by the above description of G1 ∗G2. With natural inclusions G ⊂ FG,
the existence follows from the fact that (Ff)|G = f for any group homomorphism f whose domain is
G: restrict Fϕ ∗ Fψ to G1 ∗G2 and we see by the (apple-looking) commutative diagram below that the
image of the restricted map should live in G.

G1 G1 ∗G2 G2

FG1 FG1 ∗ FG2 FG2

FG

G

φ

(Fφ∗Fψ)|G1∗G2

ψ

Fφ

Fφ∗Fψ

Fψ

Again, the free product for an arbitrary (set-valued) collection of groups is defined similarly, and all
results pass over.
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Example 7.1

We have immediately that F (m) = 〈a1〉 ∗ · · · ∗ 〈am〉, where each 〈ai〉 is the infinite cyclic group
generated by ai.
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Lecture 11

Ping-Pong Lemma
From what we have got, we can easily see that if G = 〈G1, G2〉 and every element of G can be written

uniquely as an interchanging product of nonidentical elements1 from G1 and G2, then G ∼= G1 ∗ G2

canonically. This observation leads to the following lemma:

Lemma 7.3. Ping-Pong

Consider a group G acting on a set X. Let G1 and G2 be two different subgroups with |G1| ≥ 3
and |G2| ≥ 2. Let X1 and X2 be two disjoint subsets of X such that

(G1 \ {1})X1 ⊂ X2, (G2 \ {1})X2 ⊂ X1,

then 〈G1, G2〉 ∼= G1 ∗G2.

Proof. It suffices to show that any interchanging product of nonidentical elements in G1 and G2 is not
equal to 1. Let a denote elements in G1 and b denotes elements in G2, then the interchanging products
can be divided into four cases:

Case 1. a1b1a2b2 · · · an−1bn−1an. Since a1b1a2b2 · · · an−1bn−1anX1 ⊂ X2, we are done.
Case 2. b1a1b2a2 · · · bn−1an−1bn. Since b1a1b2a2 · · · bn−1an−1bnX2 ⊂ X1, we are done.
Case 3. a1b1a2b2 · · · anbn. Since |G1| ≥ 3, there exists a ∈ G1 such that a 6= 1 and a 6= a1. If

a1b1a2b2 · · · anbn = 1, then its conjugation by a is also equal to 1, i.e. a−1a1b1a2b2 · · · anbna = 1.
However, this cannot be true because the conjugation is in the form of Case 1.

Case 4. b1a1 · · · bnan. Conjugate by an element a ∈ G1 \ {1, an} and we are back in Case 1.

As an important application of Ping-Pong Lemma, let us consider SL(n,Z) = {A ∈Mn(Z) | det(A) =
1}. It is in fact a group, because for any invertible matrix A = (aij), we have the formula A−1 =

1
det(A) ((−1)ij det(Aij))

T , which is in SL(n,Z) provided that aij ∈ Z and det(A) = 1.

Theorem 7.4

We have an embedding F (2) ↪→ SL(2,Z).

Such embedding is not canonical, though.

Proof. Consider the action of SL(2,Z) on C2 by matrix multiplication. The subgroupsG1 :=

〈(
1 2
0 1

)〉
={(

1 2n
0 1

)
| n ∈ Z

}
and G2 :=

〈(
1 0
2 1

)〉
=

{(
1 0
2n 1

)
| n ∈ Z

}
are both cyclic. By example 7.1, we

have F (2) = G1 ∗G2, hence it suffices to show that G1 ∗G2
∼= 〈G1, G2〉 ⊂ SL(n,Z), which will be done

using the Ping-Pong Lemma.
Indeed, consider the subsets X1 = {(z1, z2)T ∈ C | |z2| > |z1|} and X2 = {(z1, z2)T ∈ C | |z1| > |z2|}.

Then
(
1 2n
0 1

)(
z1
z2

)
=

(
z1 + 2nz2

z2

)
. Since

|z1 + 2nz2| ≥ 2|n||z2| − |z1| > |z2|,

provided that |z2| > |z1| and n 6= 0, we see that (G1 \ {1})X1 ⊂ X2. Similarly (G2 \ {1})X2 ⊂ X1 is
seen.

1i.e., elements that are not equal to 1.
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A related theorem that is more general and much more difficult to prove is posted below without
proof:

Theorem 7.5. J.Tits Alternative

Let H be a finitely generated subgroup of GL(n, F ). Then either F (2) embeds into H or H contains
a normal subgroup with |H : N | <∞ and N is solvable.

Definition 7.1

A group G is residually finite if there exists a family of homomorphisms ϕi : G→ Gi with |Gi| <∞
and

⋂
i kerϕi = (1).

It is obvious that every subgroup of a residually finite group is again residually finite.
F (2) is residually finite, as a result that SL(n,Z) is residually finite: consider the homomorphisms

SL(n,Z) → SL(n,Z/mZ) and we are done.
Recall that, let p be a prime number, G is a finite p-group if |G| = ps. A group G is residually-p if

there exists a family of homomorphisms ϕi : G→ Gi where each Gi is a finite p-group and
⋂
i kerϕi = (1).

Again, every subgroup of a residually-p group is residually-p.
F (2) is residually-p for any prime p: we have F (2) =

〈(
1 p
0 1

)
,

(
1 0
p 1

)〉
⊂ SL(2,Z, p), where

SL(n,Z, p) is defined by

SL(n,Z,m) := {A ∈ SL(n,Z) | A = I mod m}.

The following exercise thus implies what we claimed:

Exercise 7.1
Show that SL(2,Z, p)/ SL(2,Z, ps) is a finite p-group.

Solution. By Corollary 5.3 in [GTM73], it suffices to show that every element in SL(2,Z, p)/SL(2,Z, ps)
has order a power of p. Indeed, every element in SL(2,Z, p) is of the form I + p · A for some matrix
A ∈ SL(n,Z), and the binomial theorem implies that

(I + p ·A)p
s

= I + ps · (something).

Remark 7.1
With a similar argument (along with the Lagrange’s theorem), one sees that any finite residually-p
group is in fact a p-group.

§8 Wreath Products
Recall that the Cartesian product

∏
i∈I Gi of an arbitrary family of groups Gi index by I can be

thought as a subset of functions from I to
⋃
i∈I Gi.

Example 8.1

The universal property of the Cartesian product implies that residually-p groups are precisely
groups that are embeddable into a Cartesian product of a family of finite p-groups.

The direct product
∏
i∈IGi is the subgroup of

∏
i∈I Gi where for each element (gi)i∈I there are only

finitely many components gi that are not equal to 1. Every Gi embeds naturally into
∏
i∈IGi, and Gi

and Gj commute for any i 6= j seen as subgroups of
∏
i∈IGi.

Except the universal property as a final object that the direct product inherits as a subobject of
Cartesian product, the finiteness makes the direct product a quotient of free product, which means that
it enjoys a universal property as an initial object. To be explicit, the direct product is free product
quotient the relation such that Gi and Gj are made commutative whenever i 6= j, hence the universal
property is that, for any family {ϕi}i∈I of homomorphisms ϕi : Gi → G such that ϕi(Gi) and ϕj(Gj)
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commute in G whenever i 6= j, there exists a unique homomorphism ϕ :
∏
i∈IGi → G such that ϕi = ϕ◦ιi

for each i where ιi : Gi ↪→
∏
i∈IGi is the natural embedding. See the diagram below.

Gi
∏
i∈IGi

G

ιi

φi
φ

Using the presentation of free product, we thus obtain a presentation for the direct product: Suppose
that each Gi is presented by Gi = 〈Xi | Ri(Xi) = 1〉, then∏

i∈I
Gi = 〈ti∈IXi | Ri(Xi) = 1, xixj = xjxi, i 6= j〉.

Note that there is no similar thing that holds for the Cartesian product, since the Cartesian product is
not generated by the groups Gi’s.

Remark 8.1
Similarly one can define the Cartesian product and direct product for algebras. However, note
that the direct product of infinitely many algebras does not contain a multiplicative identity.
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Lecture 12

Recall that so far we can conclude the normal forms in
∏
i∈IGi, which is explicitly, for any x ∈

∏
i∈IGi,

we have unique expression (up to permutation) that x = gi1 · · · gik for distinct i’s with gij ∈ Gij for each
j = 1, · · · , k. Let A and B be two groups and B acts on A via a left action B → Aut(A), which induces a
right action of the opposite group Bop on A. The semidirect product of B acting on A, denoted as A⋊B
or B ⋉A, is defined as the group whose underlying set is the set of pairs

A⋊B := {b · a | b ∈ B, a ∈ A} = B ×A,

and the multiplication is given by, for any b1a1 and b2a2, that

(b1 · a1)(b2 · a2) ∼ bop
1 b

op
2

(
(bop

2 )−1a1b
op
2

)
a2 ∼ b1b2 · (ab21 a2),

where ab21 denotes the element in A obtained by the action of b2 on a1. The opposite is taken because
the conjugation by b2 in the form b−1

2 a1b2 is a right action, instead of left. With the opposite taken, the
notation is compatible with conjugation in the sense that the following are all equal to (bop

1 b
op
2 )−1abop

1 b
op
2 :

(
ab1
)b2 left action

======== ab2b1 = a(b2b1)
op

= ab
op
1 bop

2
right action
=========

(
ab

op
1

)bop
2

.

In other words, we have an isomorphism

A⋊B ∼= 〈A,Bop | (bop)−1abop = ab, a ∈ A, b ∈ B〉,

given by b · a 7→ bopa. Note that A is normal seen as a subgroup of A⋊B.
Now let us consider the set of all functions from B to A, denoted by Fun(B,A). Endowed with the

point-wise multiplication, it is a group isomorphic to the Cartesian product AB =
∏
B A. Consider the

(left) action of B on Fun(B,A) defined by, for any element b ∈ B and f ∈ Fun(B,A), the action of b
brings f to the function f b : B → A given by f b(b′) = f(bb′) for any b′ ∈ B.

With this action, the wreath product of A by B, denoted as A oB, is then defined by

A oB := Fun(B,A)⋊B.

Note that there is a natural embedding A ↪→ Fun(B,A) ↪→ A o B by sending elements a ∈ A to the
function ȧ : B → A defined by ȧ(1B) = a and ȧ(b) = 1A whenever b 6= 1B . Let us denote the image of
this embedding by Ȧ.

For this lecture, we are more concerned about the restricted wreath product, which is defined by

AōB :=
∏
B

A⋊B =

{
b · f | b ∈ B, f ∈

∏
B

A ⊂ Fun(B,A)
}
.

The natural embedding above also restricts to this case.
A basic but important observation is that elements in Ȧb commutes with Ȧb

′ whenever b 6= b′.

Remark 8.2
Note that since in A oB the conjugation by B is not trivial as long as both A and B are not, the
wreath product (either restricted or not) of two nontrivial groups is never abelian.

For the restricted wreath product, we have the following generating theorem:

Theorem 8.1

Suppose that B = 〈b1, · · · , bm〉 and A = 〈a1, · · · , an〉, then AōB is generated by
b1, · · · , bm, ȧ1, · · · , ȧn.
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Proof. Since every element in AōB is of the form bf , it suffices to show that b1, · · · , bm, ȧ1, · · · , ȧn generate∏
BA. Indeed, we have

f =
∏
b∈B

˙f(b)
b−1

,

where only finitely many ˙f(b) is nontrivial. Since ˙f(b) ∈ Ȧ = 〈ȧ1, · · · , ȧn〉, we are done.

Therefore, the restricted wreath product of any two finitely generated groups is finitely generated.
However, it does not preserve the property of being finitely presented:

Theorem 8.2

The group of restricted wreath product Z̄oZ = 〈a〉̄o〈b〉 is not finitely presented.

Before the proof of the theorem, let us firstly look at the following lemma:

Lemma 8.3

Let G = 〈X | R = 1〉 be a presentation of group G where |X| <∞. If G is finitely presented, then
there exists a finite subset R0 of R such that G = 〈X | R0 = 1〉.

Proof of Lemma 8.3. By proposition 2.3, we have shown that if G is finitely presented, then there exists
a finite set of relations S such that

G = 〈X | S = 1〉.

For each element s ∈ S, since R and S generate a same normal subgroup of the free group F (X), there
exists r1, · · · , rt ∈ R and words g1, · · · , gt such that

s = rg11 · · · rgtt .

Since |S| <∞, collect the r1, · · · , rt for each s ∈ S and we obtain the desired R0.

Proof of Theorem 8.2. By theorem 8.1 we know that Z̄oZ is generated by b and ȧ. The fact that Ȧb and
Ȧb

′ commutes whenever b 6= b′ thus gives an epimorphism

〈x, y | [xy
i

, xy
j

] = 1, i, j ∈ Z〉 → Z̄oZ, x 7→ ȧ, y 7→ b,

where xyi = y−ixyi and [xy
i

, xy
j

] = (xy
j

xy
i

)−1xy
i

xy
j . This epimorphism is in fact an isomorphism: any

word in the presentation can be written uniquely (up to permutation) as

yk(xy
i1
)m1 · · · (xy

ij
)mj ,

where i1, · · · , ij are distinct, which is sent to bk(ȧbi1 )m1 · · · (ȧb
ij
)mj . Note that bk(ȧbi1 )m1 · · · (ȧb

ij
)mj = 1

only if k = 0, since Z̄oZ =
⊔
k∈Z

(
bk ·

∏
B〈ȧ〉

)
and the only coset containing the identity is

∏
B〈ȧ〉.

However, for (ȧb
i1
)m1 · · · (ȧb

ij
)mj = 1, the only chance is that m1 = · · · = mj = 0, as one can see by

evaluating it at elements in 〈b〉. Therefore we obtain a presentation

Z̄oZ = 〈x, y | [xy
i

, xy
j

] = 1, i, j ∈ Z〉.

Note that since we have

[xy
i

, xy
j

] = [xy
i−j

, x]y
j

,

and

[a, b] = 1 ⇔ [b, a] = 1,

there is in fact

Z̄oZ = 〈x, y | [xy
i

, x] = 1, i ∈ N∗〉.

By lemma 8.3, it now suffices to show that there does not exist a finite subset S of {[xyi , x] | i ∈ N∗}
such that Z̄oZ = 〈x, y | S = 1〉. The existence of such S would give that
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Z̄oZ = 〈x, y | [xy
i

, x] = 1, i = 1, · · · , n〉,

for some n that is large enough, hence it suffices to show that for any n ∈ N∗, the relations [xy, x], · · · , [xyn−1

, x]

cannot give [xy
n

, x], so that no finite subset of {[xyi , x] | i ∈ N∗} would generate it. For this purpose we
need only construct a specific group where we have [xy

i

, x] = 1 for i = 1, · · · , n− 1, while [xy
n

, x] 6= 1.
Let G be any nonabelian group, which means that there exists u, v ∈ G such that uv 6= vu. Consider

G oZ = G o 〈b〉 and the function f : 〈b〉 → G given by f(1) = u, f(bn) = v, and f(bk) = 1G for any k 6= 0, n.
Now that in G o Z, we have [f b

i

, f ] = 1 for i = 1, · · · , n− 1 while [f b
n

, f ] 6= 1 because f bn(1) = v.

Remark 8.3
With a similar argument, one sees that the restricted wreath product of any infinite group B
acting on nontrivial A is not finitely presented. In fact, since |AB | ≥ 2N = |R|, we would have
that A oB is uncountable.

Exercise 8.1
Show that the group of isometries on the finite rooted tree

is isomorphic to the iterated wreath product C2 o (C2 o C2), where C2 = Z/2Z.
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Lecture 13

Let us end this section with the following theorem:

Theorem 8.4. Krasner–Kaloujnine

Let A�G and B = G/A. Then there exists a natural embedding G ↪→ A oB.

Proof. Note that B is a set of cosets. Let us denote the image of an element g ∈ G in B by ḡ. Note that
adding bar is a homomorphism since it is identical to the quotient map. Let s : B → G : b 7→ bs be any
function of choosing representatives. Since elements in A oB are of the form b · f , it is natural to expect
that the embedding G ↪→ A o B is of the form g 7→ ḡfg for some fg ∈ Fun(B,A). Assuming this form,
then for it to be a homomorphism we would need exactly that f1G = 1Fun(B,A) and

g1g2fg1g2 = (g1fg1) (g2fg2) = g1g2f
g2
g1 fg2 .

Therefore, it suffices to define fg in the way that f1G = 1Fun(B,A) and fg1g2 = fg2g1 fg2 . Let us define

fg(b) := ((ḡb)s)
−1
gbs.

It is easy to see that ((ḡb)s)
−1
gbs ∈ A, since ḡb = ḡbs = gbs. Hence fg : B → A is well-defined. Clearly

f1G = 1Fun(B,A). For fg1g2 = fg2g1 fg2 , we have

fg2g1 (b)fg2(b) = fg1 (g2b) fg2(b) = ((g1g2b)
s)

−1
g1(g2b)

s (g1(g2b)
s)

−1
g2b

s = ((g1g2b)
s)

−1
g1g2b

s = fg1g2(b).

Therefore the homomorphism is well-defined.
To show that it is an embedding, suppose that g ∈ G is mapped to 1A≀B . Then ḡfg = 1A≀B , which

forces that ḡ = 1B , hence g ∈ A. Also, we have fg = 1Fun(B,A), which means that

((ḡb)s)−1gbs = 1,

for any b ∈ B. Since ḡb = b, we have that (bs)−1gbs = 1, therefore g = 1G.

§9 The Burnside Problem
Consider a finitely generated group G where every element g ∈ G is of finite order. The condition

that every g ∈ G has a finite order is called that G is torsion.
The General Burnside Problem asks, if a group G is finitely generated and is torsion, then must G be

finite?
The answer is: No. We will construct two counterexamples later, each of them are important by its

own right.
The following states a less general version of the problem, which is known as The Burnside Problem:

Question. The Burnside Problem

If a group G is finitely generated and there exists n ∈ N∗ such that gn = 1G for all g ∈ G, then
must G be finite?

For n = 2, this is trivial: since g = g−1 for any g ∈ G, G is abelian. Since every element in G has
an order no larger than 2, every element is a word without any repetition of alphabets, hence |G| ≤ 2m,
where m is the number of generators of G.

However, the problem is highly nontrivial for any n ≥ 3: Burnside himself proved the statement for
the case n = 3, Sanov proved it for the case n = 4 and M. Hall proved it for the case n = 6. The problem
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for n = 5, however, remains open till now. In 1968, Novikov-Adian proved it for the cases of any odd
n ≥ 4381, which used a simultaneous induction on more than 100 indices and has a length of more than
300 pages; we will not go through that proof.

Noticing that any finite group can be embedded into the general linear group GL(n, F ) for any field
F (consider the inclusion G ↪→ FG, where FG is the free vector space generated by G over F ), Burnside
proved the following restricted statement:

Theorem 9.1. Burnside

Every finitely generated torsion subgroup of GL(n,C) is finite.

We will prove this theorem, admitting the following lemma which is again by Burnside. Let V = Cn,
we will consider GL(V ) instead of GL(n,C), so that we do not specify any basis.

Lemma 9.2. Burnside

If a subset S of GL(V ) acts irreducibly on V , i.e. there is no non-trivial subspace of V that is
invariant under all elements in S, then CS := spanC S = EndF(V ).

The statement is easily verified for S = GL(V ) since ( 1 0
0 0 ) =

1
2

(
( 1 0
0 1 ) +

(
1 0
0 −1

))
and so on.

Observe that, if W ⊂ V is invariant under all elements in S, then S acts naturally on V/W , and
if we choose a basis of W and then extend it to a basis of V , then elements in S would have matrix
representations of the form (

∗ ∗
0 ∗

)
.

With this observation, we state and prove the following two lemmas, which will be useful in our proof of
Burnside’s Theorem:

Lemma 9.3

For any subset S ⊂ GL(V ), there exists a finite chain of subspaces

{0} = V0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vk = V,

such that all Vi’s are S-invariant and S acts irreducibly on each fraction Vi+1/Vi.

Proof. If S acts irreducibly on V then there is nothing to prove. If not, let V1 be a nontrivial S-invariant
subspace of minimal dimension. If S acts irreducibly on V/V1, then we are done; if not, let V2 ⊂ V be the
preimage of a nontrivial S-invariant subspace of minimal dimension in V/V1, and repeat this procedure.
We will be done in at most dimV = n steps.

Lemma 9.4

In proving Burnside’s theorem, it suffices to consider G < GL(V ) that acts irreducibly on V .

Proof. Suppose that the theorem has been proved for any G that acts irreducibly on V . Suppose now
that we are given a finitely generated torsion subgroup G ⊂ GL(V ) whose action on V is not necessarily
irreducible. Let {0} = V0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vk = V be a chain as in lemma 9.3 with S = G. Choose a
basis of V1 and extend it to a basis of V2, and so on until we obtain a basis of Vk = V . Then the matrix
of an element g ∈ G with respect to this basis is of the form

M(g) =



M(g|V1) ∗ 0 0 0
0 M(g|V2/V1

) ∗ 0

0 0 M(g|V3/V2
) ∗

...
...

...
... . . .

0 0 0 · · · M(g|V/Vk−1
)

 .

Consider the map G→Mn(C) given by
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g 7→



M(g|V1
) 0 0 0 0

0 M(g|V2/V1
) 0 0

0 0 M(g|V3/V2
) 0

...
...

...
... . . .

0 0 0 · · · M(g|V/Vk−1
)

 ,

it is clear that it is a group homomorphism. Its image is a finite set, because by our assumption we know
that the choice of each M(g|Vi+1/Vi

) is finite. The map is in fact an embedding, because if g 7→ 1, then
we have

M(g) =

1 ∗
. . .

0 1

 = I + U,

where U ∈Mn(C) is upper-triangular. Recall that the order of g should be finite, we have

I + dU +

(
d

2

)
U2 · · ·+ Ud = (I + U)d = I,

for some positive integer d, hence dU +
(
d
2

)
U2 · · · + Ud = (I + U)d = 0. If U 6= 0, then consider the

upper diagonal in N which is the nearest to the diagonal among those whose entries are not identically
zero. However, the particular upper diagonal in Uk for any k ≥ 2 must be identically zero, giving that
the upper diagonal itself must be zero, a contradiction. Therefore we must have U = 0, concluding the
proof.

Proof of Theorem 9.1. By lemma 9.4, we may assume that G acts irreducibly. Let us prove the theorem
firstly with an additional assumption, and then remove the assumption. The additional assumption is
that the orders of elements of G are bounded uniformly, i.e. there exists d ∈ N∗ such that gd = 1 for all
g ∈ G. With this assumption, we then see that the diagonal of the Jordan form of an element g ∈ G
consists of d-th roots of the unity. Therefore, there are only finitely many available choices for the trace
Tr(g) for elements g ∈ G, i.e. the image of the trace Tr : G → C : g 7→ Tr(g) is finite.2 By lemma 9.2,
since G acts irreducibly, G spans EndC(V ), so we can find elements g1, · · · , gn2 ∈ G that form a basis of
EndC(V ). Consider the map

G→ Cn
2

: g 7→ (Tr(gg1), · · · ,Tr(ggn2)),

then its image is again finite, since there are only finitely many choices for each entry. Now it suffices to
show that this map is injective. Indeed, since Tr is linear, if Tr(ggi) = Tr(g′gi) for all i = 1, · · · , n2, then
Tr((g−g′)gi) = 0 for all i = 1, · · · , n2. Since g1, · · · , gn2 spans EndC(V ), we thus see that Tr((g−g′)M) =
0 for any M ∈ EndC(V ). Since Tr((aij)Ekl) = alk, the only chance that this happens is g − g′ = 0,
concluding the injectivity.

The rest of the proof will be given in the next lecture.

2In fact, by the proof of the preceding Lemma, the Jordan form of g must be diagonal; but this cannot tell the finiteness
of G, because the Jordan basis for each element may be different. Note though that the trace is invariant under the choice
of basis.
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Lecture 14

Continue of the Proof of Theorem 9.1. Let us now remove the assumption. We will use some field theory.

Lemma 9.5

For any fixed n ≥ 1, there exists a sufficiently large N such that any torsion matrix from GL(n,Q)
has order no more than N . It follows that AN ! = 1 for all torsion matrix A ∈ GL(n,Q).

Proof of Lemma 9.5. Let A ∈ GL(n,Q) be torsion. Brought to C, our preceding results tell that any
torsion matrix A must be diagonalizable over C, and the entries λi’s in the diagonal would all be roots
of the unity. Suppose that λi has multiplicative order d, i.e. λdi = 1, then basic field theory gives that
[Q(λi) : Q] := dimQ Q(λi) = ϕ(d), where ϕ : N∗ → N∗ is the Euler function, i.e. ϕ(d) is the number of
integers less than d and are coprime to d. On the other hand, the characteristic polynomial of A tells
that the λi’s are roots of a polynomial of degree n, hence [Q(λi) : Q] ≤ n. Therefore, for any λi on the
diagonal, its multiplicative order is no more than the integer N such that ϕ(N +m) > n for all m ∈ N∗.
Such N exists, because ϕ is asymptotically increasing in the sense that ϕ(n)/n1−δ → ∞ as n → ∞ for
any δ > 0.

Let X be any set, we can consider the field Q(X) of all rational polynomials with variables in X,
i.e. the field generated by elements of the form f(x1,··· ,xm)

g(y1,··· ,yk) , with x1, · · · , xm, y1, · · · , yk ∈ X, f, g ∈ Q[X]

and g 6= 0. Note that since Q is an infinite field, by an induction on the number of variables one
sees that for any polynomial f ∈ Q[X] that is not identically zero, there exists α1, · · · , αm ∈ Q such
that f(α1, · · · , αm) 6= 0. Moreover, given any finite set of nonzero polynomials {fi}si=1 over Q, their
multiplication

∏s
i=1 fi is nonzero, hence there exists scalar αs in Q such that fi(α) 6= 0 for all i = 1, · · · , s.

With the same N as above, we have the following lemma

Lemma 9.6

For any fixed n ≥ 1, any torsion matrix from GL(n,Q(X)) has order dividing N !.

Proof of Lemma 9.6. Suppose AN ! 6= In, then we get a system of inequalities. Substitute scalar α’s in
Q into the indeterminants such that all the inequalities along with those that the dominator is nonzero
hold and we obtain a contradiction to the preceding lemma.

Finally, let G be a finitely generated subgroup of GL(n,C), then there exists a finitely generated
subfield L = Q(α), where α is the set of entries of generators of G. By basic field theory, there exists a
transcendental field K = Q(X) for some set X such that there is a chain of inclusions

Q ⊂ K ⊂ L,

and [L : K] < ∞. Write s := [L : K], then L naturally embeds into Ms(K) by considering the right
multiplication L ↪→ EndK(L) : a 7→ Ra. With this embedding, we see that G can be seen as a subgroup
of GL(ns,K) via the chain G < GL(n,L) < GL(ns,K). If G is torsion, then the preceding lemma applies
and we obtain the condition that the orders of elements of G are uniformly bounded.

Remark 9.1
In general, it is true that every finitely generated torsion subgroup of GL(n, F ) for any field F
is finite. Our proof for F = C can be divided into two parts, one is that every subgroup where
the orders of elements are uniformly bounded is finite, the other is that every finitely generated
torsion subgroup satisfies the condition that the orders of elements are uniformly bounded. Our
argument for the former only applies when the field has zero characteristic.
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A Counterexample to General Burnside Problem
Let us move on to construct counterexamples of the General Burnside Problem. From now on we will

not assume that every algebra has an identity element.
Let A be an algebra over a field F . An element in A is nilpotent if there exists n ≥ 1 such that an = 0.

The algebra A is nilpotent if there exists N ≥ 1 such that AN = (0), which means that the product of
any N elements in A is zero. A is called a nil algebra if every element in a is nilpotent.

In 1941, A. Kurosh formulated the following question, which turns out to be related to the General
Burnside Problem:

Question. Kurosh Problem

Suppose A is finitely generated and nil, must there be that A is nilpotent and A is finite dimensional
over F?

H. M. Wedderburn proved the following

Theorem 9.7. H. M. Wedderburn

If dimF A <∞ and A is nil, then A is nilpotent.

Conversely, if A is finitely generated and nilpotent with An = (0), then A is spanned by the products
of its generators of length less than n, hence A is finite dimensional. Therefore, under the setup of Kruosh
Problem, finite dimensionality and nilpotency of A are equivalent.

For an algebra without unit, we can consider the direct sum

Â := A⊕ F · 1 = {(a, α · 1) | a ∈ A,α ∈ F},

with the obvious structure of algebra. The algebra Â can be seen as A added the unit, and is called the
unital hull of A.

Let a ∈ A be a nilpotent, then 1+a ∈ Â is invertible, with inverse given by the finite sum (1+a)−1 =
1 − a + a2 − a3 + a4 − · · · . Suppose that charF = p > 0, then 1 + a has a finite multiplicative order:
suppose an = 0, choose k such that pk ≥ n and then

(1 + a)p
k

= 1 +

(
pk

1

)
a+ · · ·+

(
pk

pk − 1

)
ap

k−1 + ap
k

= 1,

since each
(
pk

i

)
is divisible by p for 1 ≤ i ≤ pk − 1.

With these observations, we are now able to relate the Kurosh Problem with the General Burnside
Problem:

Proposition 9.8

If there exists a counterexample to the KuroshProblem with charF = p > 0 , then there exists a
counterexample to the General Burnside Problem.

Proof. Let A be a counterexample to the Kurosh Problem, say A = 〈a1, · · · am〉 is a nil algebra over F
with charF = p > 0, and A is not nilpotent. Consider the multiplicative subgroup G of Â generated by
1 + a1, · · · , 1 + am. The observation above tells that G is torsion. If G is not a counterexample to the
General Burnside Problem, then we have |G| = d <∞. Then, any product (1+ai1) · · · (1+aid) of length
d of generators 1 + a1, · · · , 1 + am would be equal to a shorter product of these generators, because the
list in G,

1, 1 + ai1 , (1 + ai1)(1 + ai2), (1 + ai1) · · · (1 + aid),

has d+ 1 elements, hence there must be

(1 + ai1) · · · (1 + ait) = (1 + ai1) · · · (1 + ait)(1 + ait+1
) · · · (1 + ait+l

),

for some t and l, which forces (1+ait+1
) · · · (1+ait+l

) = 1. Since (1+ait+1
) · · · (1+ait+l

) is a sub-product
of (1 + ai1) · · · (1 + aid), replace it by 1 and we obtain a shorter product. Expand the bracket and move
the terms, we then obtain

ai1 · · · aid =
∑
k<d

(some coefficient in Z/pZ)aj1 · · · ajk .

43



Therefore, since the choice of aik ’s are arbitrary, every product of generator ai’s of length no less than
d can be expressed as a linear combination of products of generators of length less than d, hence A is
spanned by products of generators of length less than d, which are finitely many. This concludes that
dimF A <∞, contradicting to Wedderburn’s Theorem.

Therefore, to construct a counterexample to the General Burnside Problem, it suffices to construct a
counterexample to the Kurosh Problem. We will construct it using graded algebras.
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Lecture 15

Let A = ⊕∞
i=0Ai be graded with AiAj ⊂ Ai+j . The Hilbert series HA(t) of A is then defined as the

formal power sum

HA(t) :=

∞∑
i=0

dimF (Ai)t
i.

Example 9.1

Consider the noncommutative polynomial algebra F 〉X〉 := F ·1+(
∑m
i=1 Fxi)+

(∑
i,j F · xixj

)
+

· · · with |X| = m. The corresponding Hilbert series is

HF ⟩X⟩(t) = 1 +mt+m2t2 + · · · =
∞∑
i=0

(mt)i =
1

1−mt
.

Example 9.2

Consider the polynomial algebra F [X] with |X| = m. The corresponding Hilbert series is

HF [X](t) =

∞∑
i=0

(
m+ k − 1

k

)
tk.

Recall that an ideal I of a graded algebra A is said to be homogeneous if for any element in I, all
homogeneous components of that element live in I. Equivalently, I = (I ∩A0) + (I ∩A1) + · · · . Also, if
I is generated by a set of homogeneous elements, then I is homogeneous.

Let I be a homogeneous ideal of graded algebra A, then the quotient algebra A/I is graded with
(A/I)i = Ai/(I ∩Ai) for all i ∈ N.

For two formal series
∑∞
i=0 ait

i and
∑∞
i=0 bit

i, we say that
∑∞
i=0 ait

i ≥
∑∞
i=0 bit

i, if ai ≥ bi for all
i ∈ N.

Consider an alphabet X with |X| = m. Let R be a set of homogeneous relations in F 〈X〉, then we
have a graded algebra A = 〈X | R = 0〉 = F 〈X〉/I(R). By replacing elements in X with their linear
combinations of other elements we may assume that every element in R has degree greater than 2. By
replacing R with its linear span, we may consider each homogeneous part Ri of R as a linear space and
write dimF Ri = ri. We then define the series HR(t) to be

HR(t) = r2t
2 + r3t

3 + · · · .

Under this setup, we have the following theorem:

Theorem 9.9. Golod-Shafarevich Inequality

We have the following inequality of series

(1−mt+HR(t)) ·HA(t) ≥ 1.

A consequence of this theorem is that, suppose that we found a number 0 < t0 < 1 such that

(1) HR(t) converges at t0,

(2) 1−mt0 +HR(t0) < 0,
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then the algebra A is infinite dimensional. For this consequence, notice that if A is finite dimensional,
then HA(t) is a polynomial, while we have, if HA(t0) converges, then

(1−mt0 +HR(t0))HA(t0) ≥ 1.

Since HA(t) ≥ 1, this is impossible. Hence HA(t0) cannot converge, so that HA(t) cannot be a polynomial.
Therefore A must be infinite dimensional.

This consequence will be of vital importance in our construction of the counterexample to the Kurosh
Problem: all that’s left is to construct a nil algebra A who has finite codimension in F 〈X〉/I(R), along
with a t0 as above.

Proof of Theorem 9.9. Write dimF An = an, then we have by our construction of A that a0 = 1 and
a1 = m. Also, we have that, though not canonically,

F 〈X〉n ∼= In ⊕ F 〈X〉n/In = In ⊕An.

Since dimF F 〈X〉n = mn, we have dimF In = mn − an. Moreover, let us fix for each n ∈ N a subspace
Bn in F 〈X〉n such that F 〈X〉n = In ⊕Bn, then we have dimBn = an.

Note that In := I(R)n is spanned by uRiv, where u, v are words such that

deg(u) + i+ deg(v) = n.

Notice that if v is not empty, then uRiv ⊂ In−1X. If v = 1, then deg u = n − i and uRiv = uRi ⊂
Bn−iRi+ In−1X, where we are using the decomposition that u ∈ Bn−i⊕ In−i. As u, v varies in all words
such that deg(u) + i+ deg(v) = n, we obtain for any n ≥ 2 that

In ⊂ In−1X +

n∑
i=2

Bn−iRi,

since r0 = r1 = 0. Take the dimension and we obtain the inequality that

mn − an = dimF In ≤ dimF

(
In−1X +

n∑
i=2

Bn−iRi

)

≤ (mn−1 − an−1) ·m+

n∑
i=2

an−iri.

Therefore

an −man−1 +

n∑
i=2

an−iri ≥ 0,

for all n ≥ 2. Since

(1−mt+HR(t)) ·HA(t) =

(
1−mt+

∞∑
i=2

rit
i

)(
1 +mt+

∞∑
i=2

ait
i

)

= 1 + 0 · t+
∞∑
n=2

(
an −man−1 +

n∑
i=2

rian−i

)
tn,

we are done.

Let us now construct the promised counterexample to the General Burnside Problem. Let |X| = m ≥
2, then any t0 ∈

(
1
m , 1

)
satisfies that 1−mt0 < 0. Hence we may find sufficiently large N ∈ N∗ such that

1−mt0 +
∑
k∈N

tN+k
0 < 0.

Let F be a countable field of characteristic p > 0, then F 〈X〉 is also countable. Consider the subalgebra
(without the identity) generated by all elements of degree no less than 1, F 〈X〉≥1, then we may list its
elements as

F 〈X〉≥1 = {f1, f2, · · · }.

Define a sequence of integers n1, n2, · · · as the following: let n1 = N , then all homogeneous components
of fn1

1 has degree no less than N . Let n2 be strictly larger than the maximal degree of all (nonzero)
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homogeneous components of fn1
1 , and define recursively n3 and so on. For any i ≥ 2, all homogeneous

components of fni
i has degree no less than ni, which is strictly larger than the degree of any homogeneous

component of fni−1

i−1 .
Let R be the set of all linear combinations of all the homogeneous components of fni

i ’s, then dimF Ri ≤
1 for all i ∈ N. Consider the algebra A := F 〈X〉≥1/I(R) which is of codimension 1 in F 〈X〉/I(R). A is
nil, since every element in A is of the form fi + I(R) for some i, thus is a nilpotent since fni

i ∈ I(R). It
remains only to show that F 〈X〉/I(R) is infinite dimensional, which follows from that

1−mt0 +HR(t0) ≤ 1−mt0 +
∑
k∈N

tN+k
0 < 0,

along with the previously mentioned consequence of theorem 9.9.

Another Counterexample to General Burnside Problem
Recall that in example 6.1 we have defined the Grigorchuk group. In order to study it closer, let us

introduce some notations. Firstly let us assign each vertex a level, from top to below, starting from zero.
Also, we label each vertices in the following way, that the top vertex is labelled with the empty label
and whenever we go down along the edge from a labelled vertex we label the target vertex with a label
obtained by adding 0 or 1 to the right of the previous vertex’s label respectively, according to that the
edge is on the left or the right. See the illustration below.

Let Tn denote the subtree consisting of everything of level no more than n. Let Ln be the set of all
vertices of level n, hence |Ln| = 2n. Since the automorphisms (isometries) preserve the level, Aut(Tn) acts
naturally on Ln. Such action is effective, hence the behaviour on Ln determines an element in Aut(Tn):
Write 0̄ = 1 and 1̄ = 0, then every element a ∈ Aut(Tn) is determined by the formula

a(i1, i2, · · · , in) = (̂i1, î2, · · · , în),

where (i1, i2, · · · , in) ∈ {0, 1}n and the hats indicate that there may or may not be a bar over each ij .
For example, the automorphism that exchanges 0 and 1 while “preserves” everything else is given by

a(i1, i2, · · · , in) = (̄i1, i2, · · · , in).

For this moment, let us generalize the wreath product a little bit. Let A and B be two groups and B
acts on a set X. The wreath product of A by B acting on X is then defined by

A oX B := Fun(X,A)⋊B,

where the action of B on Fun(X,A) is given by f b(x) := f(bx) for any f ∈ Fun(X,A), x ∈ X and b ∈ B.
The rest should be all similar to the wreath product defined previously, and we have

|A oX B| = |B| · |Fun(X,A)| = |B| · |A||X|. (9.1)

Noticing that we have by restriction of automorphisms a surjective map Aut(Tk+1) → Aut(Tk) : g 7→ ḡ,
let us define a map (recall that Aut(Tk) acts on Lk)

Aut(Tk+1) → (Z/2Z) oLk
Aut(Tk) : g 7→ ḡ · fg,
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where fg is defined by, for each (i1, · · · , ik) ∈ Lk, fg(i1, · · · , ik) = 0 ∈ Z/2Z if g does not reflect the two
edges below (i1, · · · , ik), and fg(i1, · · · , ik) = 1 ∈ Z/2Z if g does. Clearly this map is bijective, and the
verification that it is a homomorphism is straightforward. Therefore we obtain a recursive formula that
determines Aut(Tn):

Aut(Tk+1) ∼= (Z/2Z) oLk
Aut(Tk) : g 7→ ḡ · fg.

Moreover, with eq. (9.1), we can compute out |Aut(Tk)| explicitly for each k: we have |Aut(T1)| = 21,
hence |Aut(T2)| = 21 · 22. Inductively, suppose that |Aut(Tk−1)| = 21+22+···+2k−2 , then

|Aut(Tk)| = 21+22+···+2k−2

· 22
k−1

= 21+22+···+2k−1

= 22
k−1.

Therefore Aut(Tk) is a 2-group. Noticing that the restriction homomorphism Aut(T ) → Aut(Tk)
is to forget everything of level greater than k, it follows that Aut(T ) is a residually 2-group, since⋂
k∈N Stab(k) = 1, where Stab(k) denotes the stabilizer subgroup that fixes Lk.

Finally, let us note that we have Stab(1) ∼= Aut(T )×Aut(T ) via the map that sends an automorphism
ϕ ∈ Stab(1) to the pair of restrictions (ϕ|T ′ , ϕ|T ′′), where T ′ and T ′′ are the subtrees rooted at 0 and 1,
encircled by the blue and orange squares respectively in the following picture:
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Lecture 16

Let us build our counterexample. Recall the isomorphism that Stab(1) ∼= Aut(T ) × Aut(T ), so that
we may write every element ϕ ∈ Stab(1) as ϕ = (ϕ′, ϕ′′). Also, note that we have for any ϕ,ψ ∈ Stab(1),

ϕψ = (ϕ′ψ′, ϕ′′ψ′′).

Let a ∈ Aut(T ) be the automorphism that reflects 0 and 1 while “preserving” everything else, namely we
have a(i1, · · · , ik) = (̄i1, · · · ik) for any vertex (i1, · · · ik). Define b, c, d ∈ Stab(1) by

b = (a, c), c = (a, d), d = (1, b),

where the pairs on the right hand sides are understood as an element in Stab(1) via the isomorphism
Stab(1) ∼= Aut(T )×Aut(T ). This definition can be understood via an induction on the level of vertices:
the action of b, c, d on vertices of level no more than 1 is trivial. Suppose that the actions of b, c, d on
vertices of level k − 1 are defined, then for any vertex (i1, · · · , ik) we have, take b for an example,

b(i1, · · · , ik) =

{
(0, a(i2, · · · , ik)) i1 = 0

(1, c(i2, · · · , ik)) i1 = 1

Since (i2, · · · , ik) is of level k − 1, this defines the action of b on vertices of level k; it is easy to verify
that actions defined in this way give a well-defined automorphism. Similarly c and d are defined.

Our desired counterexample then, would be G = 〈a, b, c, d〉, the subgroup of Aut(T ) generated by
a, b, c, d. Of course G is finitely generated. What remains to check is that

• G is torsion;

• G is infinite.

Let us look into G step by step, lemma by lemma.

Lemma 9.10

a2 = b2 = c2 = d2 = 1.

Proof. It is obvious that a2 = 1. For b2, c2 and d2, it suffices to show that their actions on all vertices
are trivial, and again we do this by an induction on the level of verices. Since b2, c2, d2 ∈ Stab(1), clearly
they fix all vertices of level no more than 1. Suppose that b2, c2, d2 fix all vertices of level k − 1, then we
have, take b for an example,

b2(i1, · · · , ik) =

{
(0, a2(i2, · · · , ik)) i1 = 0

(1, c2(i2, · · · , ik)) i1 = 1

Hence the induction assumption tells that b2 acts trivially on all vertices of level k. Similarly we are done
for c2 and d2.

Lemma 9.11

bc = cd = d, bd = db = c, dc = cd = b.

A consequence of this lemma along with the preceding one is that 〈b, c, d〉 ∼= (Z/2Z)× (Z/2Z).

Proof. Again we proceed by induction on level of vertices. Suppose that all three equality holds up to
their actions on vertices of level k − 1, i.e. we have bc(i1, · · · , ik−1) = d(i1, · · · , ik−1) and etc. For any
vertice (i1, · · · , ik) of level k, we have, take bc for an example,
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bc(i1, · · · , ik) =

{
(0, a2(i2, · · · , ik)) = (i1, · · · , ik) i1 = 0

(1, cd(i2, · · · , ik)) i1 = 1

Since cd(i2, · · · , ik) = b(i2, · · · , ik) by our induction assumption, we conclude that bc(i1, · · · , ik) =
d(i1, · · · , ik). Similarly the rest equalities follow. Since the equalities are trivial for vertices of level
no more than 1, the induction applies and we are done.

Consider the intersection of Stab(1) with G. We will write StabG(1) := Stab(1) ∩ G. Note that
a 6∈ StabG(1) and b, c, d ∈ StabG(1), so that StabG(1) is a proper subgroup of G.

Lemma 9.12

StabG(1) = 〈b, c, d, aba, aca, ada〉.

Proof. Since StabG(1) is a subgroup of G, every element in it is a product of a, b, c, d. Using the relations
given by the preceding two lemmas, it suffices to show that the normal form of any element in StabG(1)
can be written as a product of b, c, d, aba, aca, ada.

A product of a, b, c, d lies in StabG(1) if and only if it involves an even number of a, since a interchanges
the vertices 0 and 1 while b, c, d all preserve them. By the preceding two lemmas, the normal form of
elements in StabG(1) must be obtained by pluging b, c, d into the gaps between the even number of a’s,
one and only one for each gap, and there may be at most one of b, c, d on each of the most left or right
sides. For example babacada is a normal form. Since there are an even number of a’s, we can always
add brackets so that the normal form is a product of b, c, d, aba, aca, ada. Explicitly, we start from left
to right and count the a’s, labeling each a with the number that we count. For a’s labelled by an odd
number, we put a left bracket on its left; for those labelled by an eve number, we put a right bracket on
its right. For example, we have b(aba)c(ada).

Observe that we have the following fact, which one could verify via an easy computation of their
action on vertices:

Lemma 9.13

aba = (c, a), aca = (d, a), ada = (b, 1). □

With the help of StabG(1), we can then show that G is infinite.

Lemma 9.14

G is an infinite group.

Proof. Let us consider the following map:

StabG(1) ⊂ Stab(1) ∼= Aut(T )×Aut(T ) → Aut(T )
ϕ 7→ (ϕ′, ϕ′′) 7→ ϕ′′

Since the projection Aut(T ) × Aut(T ) → Aut(T ) is a homomorphism, this map is a homomorphism
from StabG(1) to Aut(T ). Let us check its image. The images of the generators of StabG(1) are easily
computed using our previous results:

b 7→ c, aba 7→ a,

c 7→ d, aca 7→ a,

d 7→ b, ada 7→ 1.

Therefore the map is a homomorphism from StabG(1) onto G. Since StabG(1) is a proper subgroup of
G, it is impossible for G to be finite.

To show that G is torsion, we will use induction on length of words. Recall that in a reduction system
a length of an element is the minimal length of words representing that element. Here for an element in
G, we consider its length in the reduction system where the generators are a, b, c, d. We have proved that
elements of length no more than 1 are torsion.

Noticing that conjugate elements have the same order, we need only consider elements up to conju-
gation.
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Lemma 9.15

For g ∈ G with length(g) = 2, we have g16 = 1.

Proof. By lemma 9.10 and lemma 9.11, the elements with length 2 up to conjugation are ab, ac and ad.
We have

(ad)2 = (ada)d = (b, 1)(1, b) = (b, b) ⇒ (ad)4 = 1,

(ac)2 = (aca)c = (d, a)(a, d) = (da, ad) ⇒ (ac)8 = 1,

(ab)2 = (aba)b = (c, a)(a, c) = (ca, ac) ⇒ (ab)16 = 1.

These finish the proof.

According to our previous observation, every element in G can be written as one of the following four
reduced forms:

ax1ax2a · · · axka (I)
x1ax2a · · · axka (II)
ax1ax2a · · · axk (III)
x1ax2a · · · axk (IV)

where x1, · · · , xk ∈ {b, c, d}. For type (II), conjugation by x1 makes it become type (III). For type (I),
conjugation by a makes its length decrease by 2 and become type (IV); for type (IV), conjugation by x1
either makes it become type (III) (if x1 6= xk) or make it become type (I) with length decreased by 2
(if x1 = xk). Therefore, every element is conjugate to either an element of type (III) or the generators.
Note that elements of type (III) has length 2k.

Lemma 9.16

G is torsion.

Proof. It remains only to show that every element of type (III) g = ax1a · · · axk is torsion. Let us do
induction on length(g) (instead of k); we have shown that the statement is true for all elements with
length no more than 2. For any element g of type (III) with length 2k > 0, let us make the induction
assumption that all elements with length less than 2k are torsion, and show that g must also be torsion.

Suppose that k is even, then g lives in StabG(1) since there is an even number of a’s. Write k = 2m,
then we may break g into a product of (axia)xi+1’s:

g = [(ax1a)x2] · [(ax3a)x4] · · · [(ax2m−1a)x2m].

Each (axia)xi+1 lives in StabG(1) and can be sent to (x̃ix̄i+1, ỹiȳi+1) ∈ Aut(T ) × Aut(T ) via the map
StabG(1) ⊂ Stab(1) ∼= Aut(T )×Aut(T ), and we have x̃i, x̄i+1, ỹi, ȳi+1 ∈ {a, b, c, d} based on lemma 9.13.
Noticing that length(x̃ix̄i+1), length(ỹiȳi+1) ≤ 2, we see that g = (u, v) ∈ Aut(T ) × Aut(T ) with
length(u), length(v) ≤ 2m = k < 2k. By our induction assumption, both u and v are torsion, hence
g must also be torsion.

Suppose otherwise that k is odd, then g2 has length 4k and is still of type (III). Explicitly, we have

g2 = [(ax1a)x2] · · · [(axk−2a)xk−1] · [(axka)x1] · [(ax2a)x3] · · · [(axk−1a)xk].

Again we have (axia)xj = (x̃ix̄j , ỹiȳj) ∈ Aut(T )×Aut(T ). If nothing cancels when we multiply the pairs
together and obtain g2 = (u, v), then we would have length(u) = length(v) = 2k, for which we cannot
apply our induction assumption. Therefore we need to show that there must be something that cancels.
Note that for any i ∈ {1, · · · , k}, xi appears twice in the decomposition, once as xi and once as axia.

If there exists i ∈ {1, · · · , k} such that xi = d, then we have xi = d = (1, b) and axia = (b, 1), hence
the result follows.

If there does not exist i such that xi = d, then xi ∈ {b, c} for all i = 1, · · · , k. If there exists
i ∈ {1, · · · , k} such that xi = c, then since c = (a, d) and aca = (d, a), replace g with u and v in the
above argument and it follows that they are both torsion, so is g.

If there does not exists i ∈ {1, · · · , k} such that xi ∈ {c, d}, then x1 = · · · = xk = b, hence g = (ab)k.
Recalling that (ab)16 = 1, we are done.

Therefore G is a counterexample to the General Burnside Problem.
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§10 Tensor Product

Tensor Product for Modules
Let us introduce the tensor product in the most general case. Let R be a ring, M be a right R-module

and N be a left R-module. For an abelian group A, a map ϕ : M ×N → A is balanced if ϕ is bilinear over
Z and ϕ(mr, n) = ϕ(m, rn) for any m ∈ M , n ∈ N and r ∈ R. Consider the category where the objects
are pairs (A,ϕ : M × N → A) where A is an abelian group and ϕ : M × N → A is a balanced map. A
morphism from (A,ϕ : M ×N → A) to (B,ψ : M ×N → B) is a group homomorphism χ : A → B such
that the following diagram commutes:

A B

M ×N

χ

φ
ψ

Let us denote the universal object (recall that by universal we refer to initial) in this category as
(U, u : M × N → U). With the argument we used before for other universal objects, one proves easily
that the universal object is unique and that U is generated as an abelian group by u(M ×N). Explicitly,
let X = {xm,n | m ∈ M,n ∈ N} be an alphabet indexed by M × N , let S ⊂ X be defined by
S = {x(m+m),n − xm,n − xm,n, xm,n+n − xm,n − xm,n, xmr,n − xm,rn | m,m ∈M,n, n ∈ N, r ∈ R}, then

U = ZX/ZS.

Hence the existence of U is also proved.
We define the tensor product of M and N as U , and write M ⊗R N := U . Also, elements in U are

written in the notation that m⊗ n := u(m,n) for m ∈M and n ∈ N , hence every element in U is a sum∑
imi ⊗ ni. Since u is balanced, we have

k(m⊗ n) = ku(m,n) = u(km, n) = (km)⊗ n = u(m, kn) = m⊗ (kn),

and

(mr)⊗ n = u(mr, n) = u(m, rn) = m⊗ (rn),

for any k ∈ Z, m ∈M , n ∈ N and r ∈ R. Note that we have 0 = 0⊗ 0 in U , and consequently

0⊗ n = (0 · 0)⊗ n = 0⊗ (0 · n) = 0⊗ 0 = 0 = m⊗ 0.

Example 10.1

Consider the tensor product (Z/2Z)⊗Z (Z/3Z). For any m⊗ n ∈ (Z/2Z)⊗Z (Z/3Z), we have

2(m⊗ n) = (2m)⊗ n = 0⊗ n = 0,

and

3(m⊗ n) = m⊗ (3n) = m⊗ 0 = 0.

Hence

m⊗ n = 3(m⊗ n)− 2(m⊗ n) = 0− 0 = 0.

Therefore all elements in (Z/2Z) ⊗Z (Z/3Z) are zero, concluding that (Z/2Z) ⊗Z (Z/3Z) is the
trivial group.
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Lecture 17

Example 10.2
We have M ⊗R R ∼=M via the map m⊗ r 7→ mr. The surjectivity is obvious. For the injectivity,
if
∑
imi ⊗ ri is mapped to zero then

∑
imiri = 0. Hence

∑
i

mi ⊗ ri =
∑
i

(miri)⊗ 1 =

(∑
i

miri

)
⊗ 1 = 0⊗ 1 = 0.

Similar to this example, we have that if M =
⊕

iMi and N =
⊕

iNi, then M⊗RN ∼=
⊕

i,j(Mi⊗RNj),
where the isomorphism is induced by the balanced map(⊕

i

Mi

)
×

⊕
j

Nj

→
⊕
i,j

(Mi ⊗R Nj) :

∑
i

mi,
∑
j

nj

 7→
∑
i,j

mi ⊗ nj ,

hence is well-defined. The surjectivity is obvious. The injectivity follows from the direct sum that if∑
i,jmi ⊗ nj ∈

⊕
i,j(Mi ⊗R Nj) is zero then mi ⊗ nj = 0 for all pairs (i, j).

Tensor Product for Bimodules
Let R and S be rings. An abelian group M is said to be an (R,S)-bimodule if M is a left R-module

and a right S-module at the same time, satisfying the associative law that (rm)s = r(ms) for all r ∈ R,
s ∈ S and m ∈M .

Example 10.3

The additive group of all m× n matrices over a field F is a (Mm(F ),Mn(F ))-bimodule.

Let R, S and T be rings. Let M be an (R,S)-bimodule and N be an (S, T )-bimodule, then M ⊗S N
is an (R, T )-bimodule, where the scalar multiplication, for example by R, is defined by that

r

(∑
i

mi ⊗ ni

)
:=
∑
i

(rmi)⊗ ni.

The well-definedness can be seen from that, the left multiplication by an element r ∈ R can be seen as a
well-defined endomorphism on M ⊗S N induced by the balanced map

M ×N →M ⊗S N : (m,n) 7→ (rm, n).

For R = S = F (or S = T = F ) where F is a field, M and N are vector spaces over F and so is
M ⊗F N . The previous argument about direct sum that (

⊕
iMi)⊗R

(⊕
j Nj

)
∼=
⊕

i,j(Mi ⊗R Nj) thus
tells that if M =

⊕
i Fei and N =

⊕
j Ffj , then

M ⊗F N =
⊕
i,j

(Fei ⊗ Ffj).

Since Fei⊗Ffj = F (ei⊗fj), we see that ei⊗fj ’s form a basis of M⊗F N . Consequently dimF M⊗N =
(dimF M)(dimF N).
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Proposition 10.1

Let F be a field. Let M and N be vector spaces over F . If u1, · · · , un ∈M are linearly independent
and

∑
i ui ⊗ vi = 0 for some vi ∈ N , then v1 = · · · = vn = 0.

Note that since for vector spaces we have symmetry M ⊗F N = N ⊗F M , similar result holds for
linearly independent lists in N .

Proof. Extend u1, · · · , un to a basis of M and let f1, · · · fm be a basis of N . Write for each vi, vi =∑
j aijfj . We have

0 =
∑
i

ui ⊗ vi =
∑
i

ui ⊗

∑
j

aijfj

 = aij
∑
i,j

ui ⊗ fj .

Since by the previous argument ui ⊗ fj ’s are linearly independent, we have aij = 0 for all i and j, hence
the result follow.

Hilbert’s Third Problem
Let us introduce an application of this proposition. For a tetrahedron, we know by calculus that its

volume is equal to 1
3hS, where S is its bottom area and h is its height. Hilbert asked: is there any

“Greek” proof to this volume formula? This is known as a variant of Hilbert’s Third Problem.
A “Greek” proof refers to a proof of cutting (straightly) an arbitrary tetrahedron (or some copies

of the same tetrahedron) into pieces and glue it up to something whose volume can be computed by
fundamental methods. For example, in the 2-dimsional case, we cut a triangle along its midline and then
glue it up to a parallelogram with half height of the triangle, so that we know the area of the triangle is
1
2ah. For the 3-dimensional case, we necessarily need to cut and glue a tetrahedron into a parallelepiped.

Hilbert’s student, Max Dehn, proved using tensor product, that there does not exist such a “Greek”
proof for the volume formula of tetrahedron. He constructed an invariant of polyhedrons under the
process of cutting and gluing, which is always zero for parallelepipeds while there exists tetraherons
whose corresponding invariant is non-zero. Let us explain.

Each polyhedron has finitely many edges `1, · · · , `n. Let `1, · · · , `n also denote the length of the
corresponding edges. Every edge `i is the intersection of two faces, hence between the faces there lies an
angle αi ∈ (0, π). For each polyhedron with edges `1, · · · , `n and corresponding angles α1, · · · , αn, we
assign an element in R⊗Q R/Qπ, defined by

n∑
i=1

`i ⊗ (αi +Qπ).

This element is called the Dehn invariant of that polyhedron. It is invariant under the process of cutting
and gluing: every step of cutting creates some pairs of edges of identical length, and for each pair
their corresponding angles add up to π, hence the new elements have no contribution to the sum of the
invariant. Conversely, every step of gluing eliminates a set of elements that have no contribution to the
sum.

It is easy to see that the invariants for parallelepipeds are identically zero, because one can simply
cut and glue a polyhedron to a cuboid, where all angles are π

2 ∈ Qπ, giving only zeros in the sum. Now,
all what remains is to show that there exists a tetrahedron whose invariant is nonzero.

Let us consider the following family of tetrahedrons, whose bottom is the equilateral triangle whose
sides have lengths identically 1, and all other three edges of the polyhedron have identical length a.
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Let the angles corresponding to the edges of length a be α and those corresponding to the edges of
length 1 be β, then the invariant of such tetrahedron is

3 (a⊗ (α+Qπ) + 1⊗ (β +Qπ)) .

As 1 is fixed, both α and β are determined by a. Noticing that when a is irrational, a and 1 are linearly
independent over Q, hence by proposition 10.1 it suffices to show that there exists irrational a such that
either α+Qπ or β+Qπ is nonzero, so that the sum would be nonzero. Let us focus on β+Qπ. We have
β+Qπ = 0 if and only if β/π is rational. Let us write β(a), indicating that β is a function of a. We notice
that β(a) is monotonically strictly increasing as a increases, so is β(a)/π. The range a could be is ( 1√

3
,∞)

and the range for β is (0, π2 ), so we conclude that the function β/π : ( 1√
3
,∞) → (0, 12 ) is monotonically

strictly increasing, hence is injective. Since there are uncountably many irrational numbers in ( 1√
3
,∞)„

the image of β/π on all those irrational numbers cannot only contain rational numbers which are only
countable many, concluding the proof.

Tensor Product for Algebras
Let A and B be two F -algebras. Recall that an F -algebra A is a vector space over F equipped with

a F -bilinear operator of multiplication A × A → A. Consider the tensor product A ⊗F B, then it is a
vector space over F . It can be made into an F -algebra by defining the multiplication by(∑

i

ai ⊗ bi

)∑
j

ãj ⊗ b̃j

 =
∑
i,j

aiãj ⊗ bib̃j .

To see that such multiplication is well-defined, let us show that the left and right multiplications by
any element is well-defined. Indeed, the left multiplication by a simple element a⊗ b is the well-defined
F -linear map induced by the balanced map

A×B → A⊗F B : (ã, b̃) 7→ aã⊗ bb̃,

and similarly is the right multiplication. For left multiplication by non-simple elements, we need to show
that if

∑
i ai ⊗ bi = 0 then (

∑
i ai ⊗ bi)x = 0 for all x ∈ A ⊗F B. It suffices to show this for simple

elements x, which then follows from the F -linearity of the just-defined right multiplication by simple
elements. Similarly right multiplication by non-simple elements is well-defined, so we are done.

Suppose that A and B both have multiplicative identities, say 1A ∈ A and 1B ∈ B, then obviously
1A ⊗ 1B is the multiplicative identity in A⊗F B.

Example 10.4

Let A be an F -algebra, then A⊗F Mn(F ) ∼=Mn(A).

If A and B both have multiplicative identities, then there exists natural embeddings

A ↪→ A⊗F B : a 7→ a⊗ 1B ,

and

B ↪→ A⊗F B : b 7→ 1A ⊗ b.

Note that with these embeddings, A and B can be seen as subalgebras of A⊗F B and they commute.
Suppose that C is an F -algebra satisfying that

• A and B are subalgebras of C;

• A and B commute in C;
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• C is generated by A and B.

Then the balanced map

A×B → C : (a, b) 7→ ab,

induces an F -linear map from A⊗FB onto C. Moreover, it is easy to see that this map is a homomorphism
of F -algebras. Therefore, A⊗F B is the largest F -algebra satisfying the above three conditions.

As a final remark, the tensor product for bimodules and algebras both satisfy the associative law, for
example (A⊗F B)⊗F C ∼= A⊗F (B ⊗F C).
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Lecture 18

Centroids and Central Simple Algebras
Let A be a ring that is not necessarily unitary or associative. For an element a ∈ A, we denote by Ra

the map of right multiplication by a from A to A and by La the left. Consider the multiplication algebra,
M(A), defined by

M(A) = 〈Ra, La | a ∈ A〉,

i.e. M(A) is the algebra generated by {Ra, La | a ∈ A}. Note that M(A) is always associative, despite
of whether A is associative or not.

If A is associative, then we have RaRb = Rba, LaLb = Lab and LaRb = RbLa for any a, b ∈ A. Let
RA := {Ra | a ∈ A} and LA := {La | a ∈ A} be the rings of right multiplications and left multiplications,
then the maps Aop → RA : a 7→ Ra and A→ LA : a 7→ La are surjective homomorphisms. Also, we have

M(A) =

{∑
i

LaiRbi | ai, bi ∈ A

}
.

If in addition that A is unitary, then the two maps are also injective, hence RA ∼= Aop and LA ∼= A;
the unitary condition is required, otherwise a ring with zero multiplication would give a counterexample.
Therefore, if A is a unitary associative F -algebra, we thus obtain a surjective homomorphism

A⊗F Aop →M(A) :
∑

ai ⊗ bop
i 7→

∑
LaiRbi .

Recall that a ring A is said to be prime if IJ 6= (0) for any two nonzero ideals I and J of A. A ring A
is said to be simple if there is no nontrivial ideals in A and A2 6= (0). Hence a simple ring is automatically
prime.

Example 10.5

It is easy to see that for any field F , the ring of n-by-n matrices over F , Mn(F ), is simple.
Moreover, if a ring A is simple, then Mn(A) is also simple.

Let A be an associative algebra (not necessarily unital or commutative) over a commutative ring R,
then the centralizer of M(A) in EndR(A), called the centroid Cent(A) of A, is defined by

Cent(A) := {ϕ ∈ EndR(A) | ϕRa = Raϕ, ϕLa = Laϕ, ∀a ∈ A}.

Hence for any ϕ ∈ Cent(A), we have

ϕ(ab) = ϕ(a)b = aϕ(b),

for all a, b ∈ A.
Note that if A is unitary, then Cent(A) can be identified with the center of A, Z(A), via the map

Cent(A) → Z(A) : ϕ 7→ ϕ(1).

Lemma 10.2

(1) If A = A2, then Cent(A) is a commutative algebra (over R);

(2) If A is prime, then Cent(A) is a commutative domain (i.e. integral domain);

(3) If A is simple, then Cent(A) is a field.
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Proof. (1) For any two elements ϕ,ψ ∈ Cent(A), we have

ϕψ(ab) = ϕ(aψ(b)) = ϕ(a)ψ(b) = ψ(ϕ(a)b) = ψϕ(ab),

for any a, b ∈ A. Since A2 = A, we thus have ϕψ = ψϕ.
(2) Suppose that ϕ,ψ ∈ Cent(A) satisfies that ϕψ = 0, which gives that

0 = ϕψ(ab) = ϕ(a)ψ(b),

for any a, b ∈ A. Hence ϕ(A)ψ(A) = (0). Noticing that ϕ(A) is an ideal of A since ϕ(a)b = ϕ(ab) ∈ ϕ(A)
for any a, b ∈ A and so is ψ(A), the primeness of A thus forces that either ϕ(A) = 0 or ψ(A) = 0, implying
that either ϕ = 0 or ψ = 0.

To show the commutativity, for any two ϕ,ψ ∈ Cent(A), we consider w := ϕψ − ψϕ ∈ Cent(A). The
identity in the proof of (1) gives that w(A2) = 0. Since

w(a) · b = w(ab) = 0,

for any a, b ∈ A, we see that w(A) · A = 0, hence by the primness of A we obtain w(A) = 0, concluding
that ϕψ − ψϕ = w = 0.

(3) By (2), we see that Cent(A) is commutative. For any nonzero element ϕ ∈ Cent(A), ϕ(A) is a
nonzero ideal of simple A, hence ϕ(A) = A, thus ϕ is surjective. Noticing that the kernel of ϕ is also an
ideal of A, we thus have kerϕ = (0), hence ϕ is injective. Therefore there exists a multiplicative inverse
ϕ−1 in EndR(A). To show that ϕ−1 ∈ Cent(A), since for any generator P of M(A) we have ϕP = Pϕ,
there is

Pϕ−1 = ϕ−1(ϕP )ϕ−1 = ϕ−1(Pϕ)ϕ−1 = ϕ−1P,

concluding the proof.

Remark 10.1
With the same definition, one can also define the centroid for nonassociative algebras, and the
proof above passes over since it does not use the associativity. Note that the observation below,
which uses the commutativeness of Cent(A), relies on the associativity.

As a consequence of (3), if a simple F -algebra satisfies that F = Cent(A), then we say that A is
central simple. Observe that a simple R-algebra A is also a Cent(A)-module and

Cent(A) ⊂ EndCent(A)(A),

because of the commutativeness of Cent(A), by replacing R with Cent(A) we can make any simple algebra
central simple.

From now on let us consider only associative algebras, since the definition of tensor products of
nonassociative algebras is problematic.

Theorem 10.3

Let F be a field. Let A and B be simple F -algebras. Suppose that A is central simple and B is
unitary, then A⊗F B is simple.
If in addition that B is also central simple, then A⊗F B is also central simple.

Before proving the theorem above, let us state the following theorem by Wedderburn and Artin, which
reduces the problem of classifying finite-dimensional central simple algebras to the problem of classifying
finite-dimensional division algebras. In history, it motivated the research of division algebras, i.e. unital
algebras (not necessarily commutative or associative) where every nonzero element is invertible, and the
later development of quantum mechanics.
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Theorem 10.4. Wedderburn-Artin

(1) Any finitely dimensional simple associative unital algebra over a field is isomorphic to Mn(D)
for some positive integer n, where D is an associative division algebra over the same field;

(2) Suppose that A is a finitely dimensional associative unital algebra over a field satisfying that,
for any ideal I �A, the condition that I2 = (0) is equivalent to that I = (0). Then

A ∼=Mn1(D1)⊕ · · · ⊕Mnk
(Dk),

for some positive integers n1, · · · , nk, where D1, · · · , Dk are all associative division algebras
over the same field.

We will not prove part (2) of the theorem, whilst part (1) follows from the following two results:

Lemma 10.5. Schur

Let R be an F -algebra. Let V be a irreducible left R-module, i.e. a left R-module that contains
no proper submodule. Then the centralizer of R in EndF (V ), defined by ∆ := {ϕ ∈ EndF (V ) |
ϕ(av) = aϕ(v), ∀a ∈ R, ∀v ∈ V }, is an associative division algebra.

Note that the V in the statement of Schur’s lemma can also be viewed as a left ∆-module. Since the
only difference between associative division algebras and fields is the commutativeness, a lot of results
in Linear Algebra carries over to modules over an associative division algebra, including the definition
of linear independence, basis, matrix of linear transformations. We may as well call a module over an
associative division algebra a vector space.

With the same notation, we have

Theorem 10.6. Jacobson Density

If v1, · · · , vn ∈ V are linearly independent over ∆, then for any arbitrary elements w1, · · · , wn ∈ V ,
there exists an element a ∈ R such that avi = wi for all i = 1, · · · , n.

In particular, if dim∆ V < ∞, then the map R → End∆(V ) that sends an element in R to the left
multiplication by that element is surjective. Since End∆(V ) ∼=MdimV (∆) and R→ End∆(V ) is injective
if V = R and R is unital, this proves part (1) of Wedderburn-Artin theorem.

We would not bother proving these two results since it would take more than one hour.

Proof of Theorem 10.3. Now that A is central simple. Noticing that A is a module over M(A) and a
submodule of A over M(A) is exactly an ideal of A, A is an irreducible module over M(A). Substituting
R =M(A) and V = A in the statement of Schur’s lemma, we see that ∆ = F .

Let I be a nonzero ideal of A ⊗F B, there there exists a nonzero element
∑n
i=1 ai ⊗ bi ∈ I. By

reducing ai’s and bi’s to a linearly independent list, we may assume that a1, · · · , an and b1, · · · , bn are
both linearly independent. In particular, none of them is zero. By Jacobson Density Theorem, for
any a ∈ A there exists an element P =

∑
Lxj

Ryj ∈ M(A) such that P (a1) = a and P (ai) = 0 for all
i = 2, · · · , n. Consider the element P̃ :=

∑
Lxj⊗1Ryj⊗1 ∈M(A⊗F B)P̃ :=

∑
Lxj⊗1Ryj⊗1 ∈M(A⊗F B),

then P̃ (
∑n
i=1 ai ⊗ bi) ∈ I since I is an ideal and

P̃ (

n∑
i=1

ai ⊗ bi) = P (a1)⊗ b1 + · · ·+ P (an)⊗ bn = a⊗ b1,

concluding that A⊗ b1 ⊂ I. Consider the ideal J = {b ∈ B | A⊗ b ∈ I} of B, since 0 6= b1 ∈ J and B is
simple, there must be J = B. Therefore A⊗F B ⊂ I, finishing the proof of the first half of the theorem.

The proof of the second half of the theorem will be given in the next lecture.
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Lecture 19

Let us continue the proof. Suppose that both A and B are central simple, since 1A ⊗ 1B ∈ A⊗F B,
we have Cent(A ⊗F B) = Z(A ⊗F B). Thus we need to show that Z(A ⊗F B) = F · 1A ⊗ 1B . Since
F = Z(A)⊗F Z(B) ⊂ Z(A⊗F B), we need only prove the inclusion in the other direction.

Choose a nonzero element z =
∑n
i=1 ai ⊗ bi ∈ Z(A⊗F B), again we may assume that a1, · · · , an are

linearly independent. For any element b ∈ B, we have that

0 = [z, 1A ⊗ b] =

n∑
i=1

ai ⊗ [bi, b],

where the bracket denotes the commutator. By proposition 10.1, we have [bi, b] = 0 for all i = 1, · · · , n,
hence b1, · · · , bn ∈ Z(B) = F · 1B since b is arbitrary. Therefore we may rewrite z as

z = a⊗ 1B .

Again, for any a′ ∈ A, we have

0 = [a⊗ 1B , a
′ ⊗ 1B ] = [a, a′]⊗ 1B ,

hence a ∈ Z(A) = F · 1A. Therefore z = α · 1A ⊗ 1B for some α ∈ F , concluding the proof.

Brauer Group
From now on let us assume that all algebras are associative and unitary.
Let F be a field and A be a finite dimensional central simple algebra over F , then by part (1) of the

Wedderburn-Artin theorem, there exists a positive integer n and a division algebra D over F such that

A ∼=Mn(D).

With this identification, the center of A is exactly

Z(A) = {z · In | z ∈ Z(D)} .
Since Z(A) = F · 1A, it follows that Z(D) = F · 1A, hence D is also central simple (note that a division
algebra is automatically simple).

Let D1 and D2 be two finitely dimensional central division algebras over F , then by the just proved
theorem, D1 ⊗F D2 is central simple. Since dim(D1 ⊗F D2) = (dimD1)(dimD2) < ∞, there exists a
positive integer m along with a finitely dimensional central division algebra D3 such that

D1 ⊗F D2
∼=Mm(D3).

Therefore, we may define a binary operator on finitely dimensional central division algebras that send
the pair (D1, D2) to D1 ·D2 := D3. The following exercise guarantees that the operator is well-defined:

Exercise 10.1
Suppose that Mn(D) ∼=Mn′(D′) as F -algebras, where n, n′ ∈ N≥1 and D and D′ are both finitely
dimensional division algebras over F , then there must be n = n′ and D = D′.

Proof. If D and D′ are both commutative, then we have D · In = Z(Mn(D)) ∼= Z(Mn′(D′)) =
D′ · In′ , hence D = D′ and consequently n = n′. For the general case, since

Mn(D/[D,D]) =Mn(D)/[Mn(D),Mn(D)] ∼=Mn′(D′)/[Mn′(D′),Mn′(D′)] =Mn′(D′/[D′, D′]),

and D/[D,D] and D′/[D′, D′] are both commutative, we see that n = n′.
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Now that Mn(D) ∼=Mn(D
′). It is not hard to see that the following four maps are all isomorphisms

of algebras:
Dop → EndD−Mod(D) : d 7→ (−) · d
Dop → EndMn(D)−Mod(D

n) : d 7→ (−) · d
Mn(D)op →Mn(D

op) : A 7→ AT

Mn(D
op) → EndD−Mod(D

n) : A 7→ (−) ·A

Since Dn is the unique simple Mn(D)-module up to isomorphism (for uniqueness, see for example
Corollary 4.6 in Chapter XVII of [Lang]), from Mn(D) ∼= Mn(D

′) we see that Dn ∼= (D′)n as
Mn(D)-modules, we thus obtain

Dop ∼= EndMn(D)−Mod(D
n) ∼= EndMn(D′)−Mod((D

′)n) ∼= (D′)op,

concluding the proof.

In other words, D1 ·D2 is the unique division algebra satisfying that

D1 ⊗F D2
∼=Mm(D1 ·D2),

for some positive integer m.
Note that Mn(D) =Mn(F )⊗F D. Since the tensor is associative and commutative, the result of the

exercise implies that the operator is also associative and commutative, as we have

(D1 ⊗D2)⊗D3
∼=Mm(D1 ·D2)⊗D3

=Mm(F )⊗ (D1 ·D2)⊗D3

∼=Mm(F )⊗Mn((D1 ·D2) ·D3)

=Mmn(F )⊗ ((D1 ·D2) ·D3) =Mmn((D1 ·D2) ·D3),

similarly

D1 ⊗ (D2 ⊗D3) ∼=Mm′n′(D1 · (D2 ·D3)),

and

Mn(D3) ∼= D1 ⊗D2
∼= D2 ⊗D1

∼=Mn′(D′).

So far we have seen that the set of all finitely dimensional central division algebras over F along with
the operator form a commutative semigroup. In fact, we have the following

Proposition 10.7

The set of all finitely dimensional central division algebras over F along with the operator defined
above is an abelian group.

Proof. Since D ⊗F F = D, we have D · F = D, i.e. F is the multiplicative identity. For any finitely
dimensional central division algebra D, we show that D ·Dop = F . Since D is central simple, so is Dop,
hence D⊗F Dop is also simple. Recall that we have a surjective homomorphism D⊗F Dop ∼= LD⊗RD →
M(D). Since D ⊗F Dop is simple, the surjective homomorphism must also be injective, hence we obtain
D ⊗F Dop ∼= M(D). Since D is an irreducible module over M(D) and Cent(D) = F since D is central,
the Jacobson Density Theorem tells that M(D) ∼= EndF (D) ∼= Mk(F ) where k = dimF D. Therefore
D ⊗F Dop ∼=Mk(F ), concluding that D ·Dop = F .

The group defined in this way is called the Brauer group over F , denoted as Br(F ).

Exercise 10.2
Show that the only finitely dimensional associative division algebra over an algebraically closed
field F is F itself. Therefore the Brauer group over an algebraically closed field is trivial.

Proof. Let D be a finitely dimensional associative division algebra over an algebraically closed field
F . For any element x ∈ D, consider F [x] ⊂ D. Since x is algebraic over F and F is algebraically
closed, there must be F [x] = F , hence x ∈ F , concluding the proof.
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Let us end this section with an example displaying that the condition that A is central is necessary
in the first half of theorem 10.3. Before the example, let us recall some Galois theory. Let K be a
Galois extension over F , hence dimF K < ∞ and the Galois group G := AutF (K), the group of field
automorphisms of K that fix F , satisfies that |G| = dimF K =: n. Let us write G = {σ1, · · · , σn}.

Theorem 10.8

With the notations above, we have K ⊗F K ∼=
⊕n

i=1K as vector spaces over F .

Proof. Consider the map K × K → K : (k1, k2) 7→ kσi
1 k2, where kσi

1 := σi(k1). The map is bilinear
over F , hence is balanced. Therefore we can define a map K ⊗F K →

⊕n
i=1K by sending k1 ⊗ k2 to

kσ1
1 k2 ⊕ · · · ⊕ kσn

1 k2. Since n2 = dimF K ⊗F K = dimF

⊕n
i=1K, it suffices to show that the map is

injective. Let a1, · · · , an be a basis of K over F and suppose that
∑n
i=1 ai ⊗ bi is in the kernel of the

map, which means exactly that
n∑
i=1

a
σj

i bi = 0,

for all j = 1, · · · , n. Recall that by proposition 10.1,
∑n
i=1 ai⊗ bi = 0 if and only if b1 = · · · = bn = 0, the

condition that the map is injective is thus equivalent to that the following n-by-n matrix is nonsingular:a
σ1
1 · · · aσ1

n
... . . . ...
aσn
1 · · · aσn

n

 .

Suppose not, then the rows are linearly dependent, hence there exists k1, · · · , kn ∈ K which are not
all zeros such that

n∑
i=1

kia
σi
j = 0,

for all j = 1, · · · , n. Since a1, · · · , an is a basis of K over F and σi’s are F -linear, this implies that
n∑
i=1

kiσi = 0.

However, by Artin’s theorem (see for example Theorem 4.1 in Chapter VI of [Lang]), elements in G are
linearly independent over K, a contradiction.

Example 10.6

Let K be an extension of a field F with charF = p > 0 such that there exists an element k ∈ K \F
satisfying kps ∈ F for some positive integer s. Consider the element k ⊗ 1− 1⊗ k in K ⊗F K, it
is nonzero since 1 and k are linearly independent over F , and it is a nilpotent as a consequence
of the binomial formula. Therefore K is associative, simple and unital, but K ⊗F K contains a
nonzero nilpotent element k⊗1−1⊗k, hence is not simple since the radical ideal of (0) is proper.

§11 Rings of Fractions and Ore Condition
Let us now introduce the construction of fraction rings, which is the noncommutative analogy of

localization.
Let R be a ring. An element r ∈ R is regular if it is not a zero divisor, i.e. if a ∈ R satisfies

either ar = 0 or ra = 0, then a = 0. It is easy to see that the set of regular elements is closed under
multiplication. Let S be a multiplicative subsemigroup of R consisting of some regular elements of R.
An extension ring R̃ ⊃ R is a left ring of fractions of R relative to S if

(1) all elements in S are invertible in R̃;

(2) for any element x ∈ R̃, there exists s ∈ S and r ∈ R such that x = s−1r.
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A right ring of fractions of R relative to S is defined similarly, with the second condition modified as
x = rs−1.

If an extension is both a left ring of fractions and a right ring of fractions, then it must satisfy that
for any r ∈ R and s ∈ S, there exists r1 ∈ R and s1 ∈ S such that

rs−1 = s−1
1 r1.

Multiplication on the left by s1 and on the right by s tells that a necessary condition for a ring R to
admit an extension that is a left and right ring of fractions relative to S is that for any r ∈ R and s ∈ S,
there exists r1 ∈ R and s1 ∈ S such that

s1r = r1s.

This condition is called the Ore condition. Not all rings (along with the subsemigroup) satisfy the Ore
condition:

Example 11.1

Consider an alphabet X = {x, y} of two points and let R be the free semigroup algebra R = F 〈X〉.
Let S be the free semigroup S = X∗ (in fact, the choice of S does not matter in this case). For
s = x ∈ S and r = y ∈ R, the product s1y ends with y for any s1 ∈ S while r1x ends with x for
any r1 ∈ R, hence there cannot exist s1 ∈ S and r1 ∈ R such that s1y = r1x.

The Ore condition is in fact also sufficient.

Theorem 11.1

A left and right ring of fractions of R relative to S exists if and only if the pair (R,S) satisfies
the Ore condition.

Proof. It remains only to show that the Ore condition is sufficient. Suppose that (R,S) satisfies the Ore
condition, we consider the ring

R̃ := 〈R,Sop | ssop = 1R〉,

which obviously satisfy the first condition. A word in R̃ is an interchanging product of elements in R
and Sop, e.g., r1sop

1 · · · sop
n−1rn, since both R and Sop are closed under multiplication. The Ore condition

then tells that for any rsop, there exists r′ ∈ R and (s′)op ∈ Sop such that

rsop = (s′)opr′.

For each word in R̃, apply this for finite many times and we see that it can be written in both of the
forms sopr and rsop, concluding the proof.
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Lecture 20

Let us give another construction of rings of fractions.
For any subset M ⊂ R, let us consider its right eliminator, defined by

r(M) := {a ∈ R |Ma = (0)}.

Clearly r(M) is a right ideal of R. Similarly one defines the left eliminator of M , which is a left ideal of
R.

Let L be a left ideal of R (for which we will write L�lR) and a ∈ R be an arbitrary element. Consider
the following subset

La−1 := {x ∈ R | xa ∈ L},

which is again a left ideal of R. Note that we do not require a ∈ R to be invertible; if a is invertible, then
the above notation coincides with the usual one. For instance, we have

L0−1 = R.

Similarly one may define a−1% for a right ideal %�r R, which again is a right ideal.

Definition 11.1

A left ideal L �l R is called dense if for any element a ∈ R, the right eliminator of La−1 is zero,
i.e., r(La−1) = (0).

We will denote a dense left ideal by L �dense
l R. Note that the zero ideal can never be dense in a

nonzero ring, since r(0) = R.
The condition that a left ideal L is dense in R is equivalent to the following, which is easier to work

with:

For any element a ∈ R and 0 6= b ∈ R, there exists an element x ∈ R such that xa ∈ L (so
that x ∈ La−1) and xb 6= 0 (so that b 6∈ r(La−1)).

Example 11.2

If a ring R contains a regular element u, then R itself is a dense left ideal of R, since ub 6= 0 for
any 0 6= b ∈ R.

Lemma 11.2

Suppose that L1 and L2 are two dense left ideals of R, then L1 ∩L2 is also a dense left ideal of R.

Proof. For any element a ∈ R and 0 6= b ∈ R, since L1 is dense, there exists an element x ∈ R such that

xa ∈ L1, xb 6= 0.

Now that xa ∈ R and 0 6= xb ∈ R, hence by the denseness of L2, there exists an element y ∈ R such that

y(xa) ∈ L2, y(xb) 6= 0.

Since L1 is a left ideal, we also have that y(xa) ∈ L1. Therefore

(yx)a ∈ L1 ∩ L2, (yx)b 6= 0,

concluding the proof.
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Given a ring R, consider the set R := {f ∈ L-ModR(L,R) | L�dense
l R}, where L-ModR(L,R) denotes

the set of all left R-module homomorphisms.
With the above lemma, we can define an equivalence relation on R: for any two elements f1, f2 ∈ R,

f1 ∼ f2 if they coincide on some dense left ideal, i.e. there exists a dense left ideal L3 ⊂ L1 ∩ L2 such
that f1|L3

= f2|L3
, where L1 and L2 are the domains of f1 and f2 respectively.

Remark 11.1
This construction is very similar to the rational maps in algebraic geometry. However, in this case
the domains of maps are not open sets of a topology: although dense left ideals are closed under
finite intersections, the union of ideals may not be ideals. Still, one may replace the union by the
ideal generated by the union, and obtain something close to a topology.

With this equivalence relation ∼, let us consider the set R̃ := R/ ∼. We will define operators on it so
that it becomes a ring.

The addition is defined point-wisely, i.e. suppose f1, f2 ∈ R with domains L1 and L2 respectively,
then f1 + f2 is defined as f1 + f2 : L1 ∩ L2 → R : a 7→ f1(a) + f2(a). One can see that it is invariant
under the equivalence by replacing beforehead the domains with a sufficiently smaller one, hence it gives
a well-defined addition on R̃.

The multiplication is defined as the composition of maps (restricted appropriately), for which we need
the following lemma.

Lemma 11.3

If L �dense
l R and g : L → R is a left R-module homomorphism, then g−1(L) �dense

l R for any
L1 �

dense
l R.

Proof. For any a ∈ R and 0 6= b ∈ R, since L is dense, there exists x ∈ R such that

xa ∈ L, xb 6= 0.

Now for g(xa) ∈ R and xb 6= 0, since L1 is dense, there exists y ∈ R such that

yg(xa) ∈ L1, y(xb) 6= 0.

Since g is a left R-module homomorphism, we have g(yxa) = yg(xa). Therefore

(yx)a ∈ g−1(L1), (yx)b 6= 0,

concluding the proof.

With this lemma, for any f, g ∈ R, let L be the domain of f , then the product f · g are defined by
the composition

f · g := f ◦ g|g−1(L) ∈ R.

Again, replacing the domains by a sufficiently smaller one and one sees that this multiplication is invariant
under the equivalence, inducing a well-defined multiplication on R̃.

The following theorem shows that R can be canonically embedded into R̃op such that R̃op contains a
subring that is a ring of fractions of R. Note that R̃op itself may not be the ring of fractions of R.

Theorem 11.4

Suppose that a pair (R,S) (with S 6= ∅) satisfies the Ore condition. Then the map R → R̃

that maps an element a ∈ R to the right multiplication by a gives an embedding of R into R̃op.
Moreover, via this embedding, the elements of S are invertible in R̃op.

Proof. Since S 6= ∅, R has regular elements, hence R �dense
l R, so the map from R to R of right

multiplication by an element in R does lie in R̃. Clearly the assignment R → R̃op described in the
statement is a homomorphism of rings. To show that it is injective, let a, b ∈ R be two elements such
that lb = la for all elements l ∈ L�dense

l R, we need to show that a = b. Let u ∈ R be a regular element.
If b − a 6= 0, then u(b − a) 6= 0. Since L is dense, u(b − a) 6∈ r(Lu−1). Therefore there exists x ∈ Lu−1

such that xu(b − a) 6= 0. Since xu ∈ L, this gives a contradiction to the assumption that lb = la for all
elements l ∈ L. Therefore the injectivity is proved.
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Given an element s ∈ S, we are going to construct an element in R̃op that is the inverse of the right
multiplication by s. Consider the set Rs, it is a left R-module and is dense: for any a ∈ R and 0 6= b ∈ R,
there exists by the Ore condition two elements a1 ∈ R and s1 ∈ S such that

s1a = a1s ∈ Rs,

and since s1 is regular, we have s1b 6= 0. Futhermore, the regularity of s implies that every element in
Rs can be written as xs uniquely, hence we can define a map

s−1 : Rs→ R : xs 7→ x,

where s−1 is just a notation. Clearly s−1 is a left R-module homomorphism. Since Rs�dense
l R, s−1 ∈ R̃

and it is obvious the inverse of right multiplication by s.

Remark 11.2

By reversing the left and right, one may construct a R̃ similarly where the elements are equivalence
classes of right R-module homomorphisms from dense right ideals to R. The dual argument applies
and one obtains an embedding R ↪→ R̃.

Recall that a ring R is called left Noetherian if it satisfies maximal chain condition on left ideals, i.e.
for any strictly ascending chain of left ideals of R,

L1 ⊊ L2 ⊊ · · · ,

there exists N ∈ N∗ such that LN = LN+k for any k ∈ N.
It is not hard to see that the left Noetherian condition is equivalent to that every left ideal in R is

finitely generated as left ideals: supposing the Noetherian condition, for any ideal L we construct a chain
of left ideals

(a1) ⊊ (a1, a2) ⊊ · · · ,

where a1 ∈ L is chosen arbitrarily, and an+1 is defined inductively by a choice of element an+1 ∈
L \ (a1, · · · , an) as long as L \ (a1, · · · , an) 6= ∅. The Noetherian condition thus tells that there must be
N ∈ N∗ such that L = (a1, · · · , aN ). Conversely, if every left ideal in R is finitely generated, then for any
chain

L1 ⊊ L2 ⊊ · · · ,

the union
⋃∞
i=1 Li is also a left ideal of R, which means that it must be finitely generated, say

⋃∞
i=1 Li =

(a1, · · · , am). Hence there must exists n1, · · · , nm such that aj ∈ Lnj for j = 1, · · · ,m. Therefore⋃∞
i=1 Li =

⋃m
j=1 Lnj . Take N := maxj=1,··· ,m{nj} and we see that LN = LN+k for any k ∈ N.

Recall that a ring is a domain if every nonzero element in it is regular. The following theorem gives
us a family of domains that satisfies the Ore condition.

Theorem 11.5

A left Noetherian domain R satisfies the Ore condition relative to S = R \ {0}.

Proof. By rephrasing the Ore condition, it suffices to show that for any two elements a, b ∈ R \ {0}, we
have Ra ∩Rb 6= (0). Consider the ideals defined by

Ln := Rb+Rba+Rba2 + · · ·+Rban,

then we have a chain of left ideals

L0 ⊂ L1 ⊂ L2 ⊂ · · · .

Hence the Noetherian condition tells that there exists n ∈ N∗ such that Ln−1 = Ln. Since b2an ∈ Ln =
Ln−1, there exists x0, x1, · · · , xn−1 ∈ R such that

b2an = x0b+ x1ba+ · · ·+ xn−1ba
n−1.

Let k be the minimal nonnegative integer with xk 6= 0, then

b2an = xkba
k + xk+1ba

k+1 + · · ·+ xn−1ba
n−1.
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Since R is a domain, we then have

b2an−k = xkb+ xk+1ba+ · · ·+ xn−1ba
n−k−1,

and xkb 6= 0. Therefore

0 6= xkb = b2an−k − (xk+1ba+ · · ·+ xn−1ba
n−k−1) ∈ Ra ∩Rb,

as desired.

We will show that for a finitely dimensional Lie algebra L, its universal enveloping algebra U(L) is a
Noetherian domain. The domain condition is obvious by previous study. For the Noetherian condition,
we need the tool of filtrations.

§12 Filtrations and Deformations
Let A be a unitary F -algebra. A filtration of A is a family of subspaces {Vi}∞i=0 over F in A such that⋃∞

i=0 Vi = A,

F · 1 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ,

and ViVj ⊂ Vi+j .
Define the associated graded algebra, gr(A), by

gr(A) :=
⊕
k∈N

(Vk/Vk−1),

where V−1 := (0) by convention. The multiplication on gr(A) is defined by

(ai + Vi−1)(bj + Vj−1) = aibj + Vi+j−1 ∈ Vi+j/Vi+j−1,

for any two elements ai+Vi−1 ∈ Vi/Vi−1 and bj +Vj−1 ∈ Vj/Vj−1. With this multiplication, we see that
gr(A) is graded by gr(A)i := Ai := Vi/Vi−1, since AiAj ⊂ Ai+j .

We say that A is a deformation of gr(A). The deformation is said, in the sense that if we roughly
bring each Vi \ Vi−1 ⊂ A to Vi/Vi−1 ⊂ gr(A) in the obvious way (which does not necessarily give a
homomorphism from A to gr(A)), then for an element a ∈ Vi \ Vi−1, a difference of a nonzero element in
Vi−1 matters in A, but does not matter in gr(A). Note however that if A is itself graded as A =

⊕
i∈NAi

and Vn :=
⊕n

i=1Ai, then A = gr(A) via the identification that Vn/Vn−1 = An, which is different from
the rough mapping.

Proposition 12.1

Let L be a Lie algebra, then U(L) is a deformation of the polynomial algebra whose number of
variables (which may also be infinite) is equal to the dimension of L.

Proof. Let {ei}i∈I be a basis of L, then by theorem 3.6, the set {ek1i1 · · · eknin | kj ≥ 0, i1 < · · · < in} is a
basis of U(L). Define

Vm := span(ek1i1 · · · eknin | i1 < · · · < in, k1 + · · ·+ kn ≤ m),

for each m ∈ N and the associated gr(U(L)), then we have

(ei + V0)(ej + V0) = (ej + V0)(ei + V0),

for any basis elements ei and ej , since eiej − ejei = [ei, ej ] ∈ L = V1. For any k1 + · · ·+ kn ≤ m, since

ek1i1 · · · eknin + Vm−1 = (ei1 + V0)
k1 · · · (ein + V0)

kn ,

we see that gr(U(L)) is generated by ei+V0’s. The monomials ek1i1 · · · eknin +Vm−1 are linearly independent
as a consequence of theorem 3.6 (that ek1i1 · · · eknin ’s form a basis of U(L)), therefore we conclude that
gr(U(L)) is isomorphic to the polynomial algebra generated by {ei + V0}i∈I .
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Lecture 21

Let A be a unitary F -algebra along with a filtration V0 ⊂ V1 ⊂ · · · . We now prove the following
theorem:

Theorem 12.2

(a) If gr(A) is a domain, then A is a domain.

(b) If gr(A) is left Noetherian, then A is left Noetherian.

Proof. (a) If a and b are two nonzero elements in A, then there exists i and j such that

a ∈ Vi \ Vi−1, b ∈ Vj \ Vj−1.

Hence a+ Vi−1 and b+ Vj−1 are both nonzero in gr(A). Since gr(A) is a domain, we have

ab+ Vi+j−1 = (a+ Vi−1)(b+ Vj−1) 6= 0,

concluding that ab 6∈ Vi+j−1, in particular it is nonzero.
(2) Let L be a left ideal of A, consider the chain

V0 ∩ L ⊂ V1 ∩ L ⊂ V2 ∩ L ⊂ · · · .

Write Γn := Vn ∩ L/(Vn−1 ∩ L), then Γ :=
⊕∞

i=1 Γn is a homogeneous left ideal in gr(A). Since gr(A) is
Noetherian, Γ is finitely generated, say by ā1, · · · , ās. By replacing the generators with their homogeneous
components, we may assume that āi’s are all homogeneous elements with āi ∈ Γni

; let a1, · · · as ∈ A
be representatives of ā1, · · · , ās. For any element a ∈ L, we have a ∈ Vn \ Vn−1 for some n, hence
a+ Vn−1 ∩ L ∈ Γn ⊂ Γ. Thus there exists x̄1, · · · , x̄s ∈ gr(A) such that

a+ Vn−1 ∩ L = x̄1ā1 + · · ·+ x̄sās.

Let x1, · · · , xs ∈ A be representatives of x̄i’s, then

a− x1a1 − · · · − xsas ∈ Vn−1 ∩ L.

Repeat this procedure with a replaced by a− x1a1 − · · · − xsas and so on after n steps, we see that L is
finitely generated, hence is Noetherian.

Therefore, since F [X] is Noetherian when |X| < ∞ by Hilbert’s basis theorem (see for example
corollary 2.13 in [GTM256]), we conclude that U(L) is Noetherian when L is finitely dimensional.

Let us give a few more examples of division rings before the end of this section.

Example 12.1

Similarly to U(L), one sees that 〈x, y | yx − xy = 1〉 is a deformation of F [x, y] and it is also
Noetherian, hence it satisfies the Ore condition.

Example 12.2
For any ring R, the quaternion ring over R is R · 1⊕R · i⊕R · j ⊕R · k, where the multiplication
is defined by (a · i)(b · j) = ab · ij and similarly for k, modulo the relations ij+ ji = 0, ik+ ki = 0,
jk + kj = 0, i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j. Note that for any α = α0 · 1 + α1i+
α2j + α3k, define ᾱ := α0 · 1 − α1i − α2j − α3k, then N(α) := αᾱ = α2

0 + α2
1 + α2

2 + α2
3 ∈ R.

Therefore, if R is a division ring, then the quaternion ring over R is also a division ring: for any
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element α, we have α−1 = ᾱ/N(α).

Example 12.3

Let F be a field and ϕ ∈ Aut(F ) be an automorphism of fields with order n, i.e. ϕn = 1. Consider
the subfield fixed by ϕ, F ⟨φ⟩ := {α ∈ F | ϕ(α) = α}, then Artin’s theorem tells that [F : F ⟨φ⟩] = n.
Consider the set of Laurent series

F̃ :=

{ ∞∑
k=k0

αkt
k | k0 ∈ Z

}
,

and define the multiplication noncommutatively by

t−1αt = ϕ(α),

hence

tpαtq = ϕ−p(α)tp+q.

Since ϕn = 1, we see that tn commutes in the multiplication. The center of F̃ is thus all Laurent
series generated by tn over F ⟨φ⟩. The fact that F̃ is a division algebra follows from a similar
argument of the proof that elements with nonzero constant terms in the ring of power series are
invertible. Finally, note that the dimension of F̃ over its center is n2.

Remark 12.1
Note that not every automorphism of fields has finite order. For example, consider C(t). The
automorphism on C(t) induced by t 7→ tξ for some ξ ∈ C has finite order if and only if ξ is a root
of unity.

§13 Ultraproduct
Let X be an infinite set and P(X) be the set of all subsets of X. A nonempty system3 of subsets of

X, ∅ 6= F ⊂ P(X), is called a filter if

(1) for any A ∈ F , any subset B of X containing A is also in F .

(2) if A,B ∈ F , then A ∩B ∈ F .

(3) ∅ 6∈ F .

By (1), it is immediate that X ∈ F .

Example 13.1

For any nonempty subset A0 ⊂ X, the filter of all subsets containing A0, F := {A | A0 ⊂ A ⊂ X},
is called the principal filter over A0.

Example 13.2

The set of cofinite subsets, F = {A ⊂ X | X \A is finite}, is a filter.

Example 13.3

F = {A ⊂ X | Card(X \A) < Card(X)}, where Card(X) denotes the cardinality of X.

Lemma 13.1

A subset S ⊂ P(X) is extendible to a filter, i.e. there exists F ⊂ P(X) such that S ⊂ F , if and
only if any finite intersection of elements in S is nonempty.

3The word “system” here is just a terminology for “set”.
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Proof. The only if part is obvious. Now suppose that S satisfies the condition that any finite intersection
of elements in S is nonempty, then the system

F := {A ⊂ X | ∃A1, · · · , An ∈ S s.t. A1 ∩ · · · ∩ An ⊂ A},

is a filter containing S.
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Lecture 22

Observe that if we have an ascending chain of filters F1 ⊂ F2 ⊂ · · · , then the union
⋃∞
i=1 Fi is also a

filter. Hence by Zorn’s lemma (see for example Theorem 30 in [Shen&Vereshchagin]), on any set X,
every filter is embeddable in a maximal filter. Note that maximal filter may not be unique, and a filter
may be embeddable into several different maximal filters.

The following lemma characterize maximal filters explicitly:

Lemma 13.2

A filter F is maximal if and only if for any A ∈ P(X), either A ∈ F or X \A ∈ F .

Proof. For the if part, if there exists a filter F ′ such that F ⊊ F ′, then there exists A ⊂ X such that A ∈
F ′ but A 6∈ F . However, by the assumption we then obtain X \A ∈ F ⊂ F ′, hence ∅ = A∩(X \A) ∈ F ′,
a contradiction. Therefore F must be maximal.

For the only if part, let F be a maximal filter and A ⊂ X. Let us consider the following two statements

(1) there exists B ∈ F such that A ∩B = ∅;

(2) there exists B ∈ F such that (X \A) ∩B = ∅.

If at least one of these statements is wrong, without loss of generality say (1) is wrong, then the collection
F ∪{A} satisfies the assumption in lemma 13.1, hence it extends to a filter containing F . However, since
F is already maximal, the extended filter is still F , hence we obtain A ∈ F . Similarly if (2) is wrong,
then we obtain X \A ∈ F .

If the above is not the case, i.e. both statements are correct, noticing that the correctness of statement
(1) implies that X \A ∈ F and (2) implies that A ∈ F , we are done.

Definition 13.1

A maximal filter is called an ultrafilter.

Fixing an ultrafilter F , we call sets in F as large sets, and sets not in F as small sets. By the above
lemma, a set is either large or small, and the complements of large sets are small sets and vice versa.

Consider a family of groups {Gx}x∈X and a filter F on X. On the Cartesian product
∏
x∈X Gx we

define a equivalence relation by

(gx)x∈X ∼ (g′x)x∈X ⇔ {x ∈ X | gx = g′x} ∈ F .

Lemma 13.3

The equivalence relation ∼ is a congruence, i.e. if (ax)x∈X ∼ (a′x)x∈X and (bx)x∈X ∼ (b′x)x∈X ,
then (axbx)x∈X ∼ (a′xb

′
x)x∈X .

Proof. It follows immediately from the following relation:

{x ∈ X | axbx = a′xb
′
x} ⊃ {x ∈ X | ax = a′x} ∩ {x ∈ X | bx = b′x} ∈ F .

We call the quotient of
∏
x∈X Gx modulo the relation ∼ the filter product of {Gx}x∈X with respect to

F , denoted as
∏
x∈X Gx/F . If F is an ultrafilter, then we call the filter product as an ultraproduct.

By replacing groups with rings, algebras or fields, one obtains the definitions of ultraproducts of these
objects similarly.
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Philosophically, the fact that ∼ is a congruence in the above lemma has nothing to do with the
operator, but only with the fact that F is closed under finite intersection. With this observation, the
following theorem is natural:

Theorem 13.4. Wos

A formula holds on an ultraproduct
∏
x∈X Gx/F if and only if it holds on a large set of groups

(or rings, algebras, fields, etc) Gx.

The word “formula” needs a definition, but we would not bother to do it here. Basically it refers
to algebraic formulas which involves only finitely many variables. The following are several examples of
such formulas:

• For any x, y, z, we have (xy)z = x(yz).

• For any x, there exists y such that xy = 1 = yx.

• (In rings) For any x 6= 0, there exists y such that xy = 1.

Take the last formula for example. Consider an ultraproduct of fields
∏
x∈X Kx/F , clearly the formula

holds for all Kx, which is a large set of Kx’s. For any element 0 6= (kx)x∈X ∈
∏
x∈X Kx/F , the set

{x ∈ X | kx = 0} is small, hence its complement A := {x ∈ X | kx 6= 0} is large. Consider the element
(k−1
x )x∈X where k−1

x is exactly the multiplicative inverse of kx if x ∈ A, and k−1
x := 0 if x ∈ X \A, then

(kx)x∈X(k−1
x )x∈X = 1, since the left hand side equals to the multiplicative identity on the large set A.

Therefore, an ultraproduct of fields is again a field.
Noticing that the filter product with respect to the trivial filter F = {X} is the Cartesian product,

and the Cartesian product of more than two fields is not a field since for example (1, 0) ∈ K2 is not
invertible, one sees that the condition that

∏
x∈X Gx/F is an ultraproduct is necessary in Wos theorem.

For an ultraproduct of fields K :=
∏
x∈X Kx/F , if there exists a prime number p such that {x ∈ X |

pKx = (0)} is a large set, then we know that p = charK. If such prime number p does not exist, then
we know that charK = 0. Therefore, let P be the set of all prime numbers and F be an ultrafilter on it,
then the ultraproduct ∏

p∈P
Z/pZ

 /F ,

has characteristic zero. Hence we see that an ultraproduct of fields with nonzero characteristics may give
a field with characteristic zero.

Theorem 13.5. Malcev

Every group is embeddable into an ultraproduct of its finitely generated subgroups.

Proof. Let G be a group and S0(G) be the set of all nonempty finite subsets of G. For any x ∈ S0(G),
we consider the filter Sx = {y ∈ S0(G) | x ⊂ y}. For any x1, · · · , xn ∈ S0(G), we have

Sx1
∩ · · · ∩ Sxn

⊃ Sx1∪···∪xn
6= ∅,

hence {Sx}x∈S0(G), which is a system of subsets Sx ⊂ S0(G), satisfies the condition of lemma 13.1, thus
it extends to a filter F on S0(G), which may be taken to be maximal by Zorn’s lemma. Consider the
ultraproduct

∏
x∈S0(G)〈x〉/F where 〈x〉 denotes the subgroup of G generated by x. For any element

g ∈ G, we have a large set S{g} where for any x ∈ S{g} we have g ∈ 〈x〉. Hence we can define a map

G→
∏

x∈S0(G)

〈x〉/F : g 7→ (g ∈ 〈x〉)x∈S{g} ,

where the element (g)x∈S{g} is defined, since an element in an ultraproduct is determined by its value on
a large set of components. It is easy to verify that this map is a group homomorphism and is injective
since if g 6= h, then the image of g and h disagrees on the large set S{g,h}.

Similarly, one sees that the above theorem also holds for rings, algebras and fields.
A group G is called n-linear if G is embeddable into GL(n,K) for some field K.
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Corollary 13.5.1. Wos

If every finitely generated subgroup of G is n-linear for some fixed integer n, then G is also n-linear.

Proof. Using the embedding in the previous theorem that G ↪→
∏
x∈X Gx/F where Gx’s are finitely

generated subgroups of G, since each Gx is embeddable into GL(n,Kx) for some field Kx, we then obtain
an embedding

G ↪→
∏
x∈X

GL(n,Kx)/F .

Noticing that
∏
x∈X GL(n,Kx)/F ∼= GL(n,

∏
x∈X Kx/F) via the natural map, we are done.

Remark 13.1
Let X be a set of axioms, we say that X is consistent if it has a model, i.e. there exists a set
with some structures that satisfies all axioms in X. If one defines similarly the ultraproduct for
models, then, philosophically, the above Malcev’s theorem necessarily implies that, if every finite
subsystem of X is consistent, then the whole X is consistent.

Limit
Consider a sequence of real numbers {an}n∈N. Let F be a filter on N, then a number a is a called the

limit of {an}n∈N relative to F if for any ε > 0 there exists A ∈ F such that

|a− an| < ε, ∀n ∈ A.

Proposition 13.6

For any filter F , the limit of a sequence with respect to F , if exists, must be unique.

Proof. Suppose that a and b are both limits of {an}n∈N, then for any ε > 0 there exists A ∈ F such that
|a− an| < ε/2 for all n ∈ A and B ∈ F such that |b− an| < ε/2 for all n ∈ B. Since A ∩B is nonempty,
it follows that

|a− b| < ε,

hence we are done.

Theorem 13.7

Let F be an ultrafilter, then every bounded sequence of real numbers has a limit with respect to F .

The proof of the theorem involves the following lemma:

Lemma 13.8

In an ultrafilter, if the union of two sets A ∪ B is large, then at least one of A and B must be
large.

Proof. If both A and B are not large, then X\A and X\B are large. Hence (X\A)∩(X\B) = X\(A∪B)
is large, contradicting that A ∪B is large.

Consequently if any finite union of sets is large, then at least one of the sets must be large. Moreover,
if the union is disjoint, then exactly one of the sets is large.

Proof of Theorem 13.7. For any bounded sequence {an}n∈N, there exists b ∈ R such that {an}n∈N ⊂
[−b, b]. Fix any positive integer m, since

m−1⋃
k=−m

{
n ∈ N | an ∈

[
k

m
b,
k + 1

m
b

]}
= N ∈ F ,

we see that at least one of the sets
{
n ∈ N | an ∈

[
k
mb,

k+1
m b

]}
is large. By replacing {an}n∈N with the

subsequence {an}n∈{n∈N|an∈[ k
m b, k+1

m b]} whose index is a large set and [−b, b] with
[
k
mb,

k+1
m b

]
and repeat
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the procedure above, one shrinks the interval by 1
m each time and sees the existence of the limit from the

completeness of R.

Consider a family of metric spaces {(Mn, dn)}n∈N where the diameters of metric spaces are bounded
uniformly and an ultrafilter F on N. The previous result allows us to define a premetric on the set∏
n∈NMn/F by setting that

d ((an)n∈N, (bn)n∈N) := lim
F
dn(an, bn).

Note that d is only a premetric instead of a metric, since two distinct elements may have distance 0 with
respect to d. For instance, consider the ultraproduct [0, 1]N/F , where F is an ultrafilter containing all
cofinite subsets of N. The distance between the element ε := (1, 12 ,

1
3 , · · · ) and the origin is zero, but

clearly ε 6= 0. Furthermore, one may define a natural order on [0, 1]N/F , since for any two elements
(an)n∈N and (bn)n∈N we have

{n ∈ N | an > bn} t {n ∈ N | an = bn} t {n ∈ N | an < bn} = N.

With respect to this order, we have

0 < ε <
1

n
,

for any n ∈ N.
For any finitely generated group G, choose a finite set of generators and consider its Cayley graph

Cay(G), which is equipped with the natural metric d of graphs. Consider the balls Bn of radius n
centered at the identity 1G ∈ G, then the metric spaces (Bn, d/n) have diameters uniformly bounded
by 1. Therefore it makes sense to consider an ultraproduct

∏
n∈NBn/F equipped with the premetric.

Intuitively, as one goes through the index n increasingly, the components of elements in
∏
n∈NBn/F

become denser and denser, and the overall ultraproduct space is so dense that it is manifold-ish.
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Lecture 23

An Elegant Proof of Ax-Grothendieck Theorem
Suppose that

∏
x∈X Gx/F =: G is an ultraproduct (of groups, rings, fields, etc) where for each x ∈ X

there exists an infinite set Yx and an ultrafilter Fx on Yx such that Gx ∼=
∏
y∈Yx

Gxy/Fx for some
Gxy’s. Take the disjoint union Y :=

⊔
x∈X Yx and define an ultrafilter F̃ on Y by extending the set

{
⋃
x∈X Ux ⊂ Y | (Ux)x∈X ∈

∏
x∈X Fx}, which is extendible since its element-wise intersection with any

Yx is a filter.

Exercise 13.1

Show that G ∼=
∏
y∈Y Gxy/F̃ .

This tells that the ultraproduct is composable, i.e.

∏
x∈X

∏
y∈Yx

Gxy/Fx

 /F ∼=
∏

y∈
⊔

x∈X Yx

Gxy/F̃ .

With the result of this exercise, we prove the following proposition:

Proposition 13.9

Every commutative domain embeds into an ultraproduct of finite fields.

Firstly, let us briefly recall Hilbert’s Nullstellensatz.

Theorem 13.10. Nullstellensatz

(1) Let F be an algebraically closed field. Let S = {f1(x1, · · · , xn), · · · , fk(x1, · · · , xn)} be a
finite set of polynomials over F . A point α = (α1, · · · , αn) ∈ Fn is said to be a zero of S if
fi(α1, · · · , αn) = 0 for all i = 1, · · · , k. For a polynomial g ∈ F [x1, · · · , xn], if every zero of
S is also a zero of g, then gm =

∑k
i=1 fihi for some positive integer m and some polynomials

hi ∈ F [x1, · · · , xn].

(2) Every finitely generated commutative domain is a subdirect product of fields. Equivalently,
this means that if A is a finitely generated commutative domain, then there exists fields
Ki indexed by i ∈ I and ring homomorphisms ϕi : A → Ki for each i ∈ I such that⋂
i∈I kerϕi = (0).

(3) A field that is finitely generated as a ring is a finite field.

Note that in statement (2), by restricting the codomains of ϕi to the subring generated by ϕi(A), we
may assume that each Ki is finitely generated, hence is finite by statement (3).

With the help of Nullstellensatz, we are able to prove the following lemma.

Lemma 13.11

Let A be a finitely generated commutative domain, then A embeds into an ultraproduct of finite
fields.

Proof. Let ϕi : A → Ki be the homomorphisms in statement (2) of Nullstellensatz. By adding extra
repeated ϕi’s, we may assume that I is an infinite set. For any 0 6= a ∈ A, consider the subset of I,
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Ia := {i ∈ I | ϕi(a) 6= 0},
then it is never empty since

⋂
i∈I kerϕi = (0), and for any finitely many nonzero elements a1, · · · , an ∈ A,

Ia1 ∩ · · · ∩ Ian ⊃ Ia1···an 6= ∅,
since ϕi(a1 · · · an) = ϕi(a1) · · ·ϕi(an). Therefore {Ia}a∈A extends to an ultrafilter F on I. Now consider
the natural homomorphism A→

∏
i∈I Ki/F : a 7→ (ϕi(a))i∈I/F , it is injective because if (ϕi(a))i∈I/F =

0, then ϕi(a) = 0 for a large set I ′. If a 6= 0, then Ia is also a large set, so is Ia ∩ I ′, but ϕi(a) 6= 0 for
i ∈ Ia ∩ I ′ ⊂ Ia by definition, a contradiction.

By theorem 13.5 for rings, since every commutative domain A is embeddable into an ultraproduct∏
j∈J Aj/F of finitely generated commutative domains Aj ’s, and each Aj is embeddable into an ultra-

product
∏
i∈Ij Kji/Fj of finite fields Kji’s, we obtain by exercise 13.1 that,

A ↪→
∏
j∈J

Aj/F ↪→
∏
j∈J

∏
i∈Ij

Kji/Fj

 /F ∼=
∏

i∈
⊔

j∈J Ij

Kji/F̃ ,

concluding the proof of proposition 13.9.
With proposition 13.9, we can now give an elegant proof of Ax-Grothendieck theorem, as a piece of

art, as the end of this course.
Let F be a field. Let n be an arbitrary positive integer and P : Fn → Fn be a polynomial map, i.e.

if we write P (x1, · · · , xn) = (P1(x1, · · · , xn), · · · , Pn(x1, · · · , xn)), then each Pi is a polynomial over F .

Theorem 13.12. Ax-Grothendieck

If F is either finite or algebraically closed, then the condition that P is injective implies that P is
surjective.

Proof. It is obvious for the case where F is finite. Suppose that F is algebraically closed. For P being
injective, it means that every zero point (x, y) = (x1, · · · , xn, y1, · · · , yn) ∈ F 2n of the set {Pi(x) −
Pi(y) | i = 1, · · · , n} satisfies that xi = yi for all i = 1, · · · , n. In other words, every zero point of
{Pi(x) − Pi(y) | i = 1, · · · , n} is a zero point of xi − yi for an arbitrary i. Hence by statement (1) of
Nullstellensatz, there exists positive integer ki and polynomial hij ’s such that

(xi − yi)
ki =

n∑
j=1

(Pj(x)− Pj(y))hij(x, y),

for each i = 1, · · · , n, as polynomials in F [x1, · · · , xn, y1, · · · , yn]. Conversely, since the equality forces
x = y whenever P (x) = P (y), the equation above is equivalent to the injectivity of P . Note that the
converse does not rely on the algebraically closedness of F .

Suppose that P is not surjective, which means exactly that there exists α = (α1, · · · , αn) ∈ Fn such
that the system {Pi(x)−αi | i = 1, · · · , n} does not have a zero point. By statement (1) of Nullstellensatz,
there exists polynomials gi ∈ F [x1, · · · , xn] such that

1 =

n∑
i=1

(Pi(x)− αi)gi(x).

Note also that this equality is equivalent to the non-surjectivity of P , where the converse does not rely
on the algebraically closedness of F .

Therefore, if P is injective and not surjective, then we obtain two systems of equalities of polynomials
over F that are equivalent to the injectivity and non-surjectivity respectively. By proposition 13.9, F is
embeddable into an ultraproduct of finite fields, say

F ↪→
∏
i∈I

Ki/F .

Bring via this embedding the polynomials over F to polynomials over
∏
i∈I Ki/F , we thus obtain two

systems of equalities of polynomials over
∏
i∈I Ki/F . By theorem 13.4 (or one can do it by hand), there

exists a large set of fields Ki’s on which (the projection of) the two systems of equalities both hold, in
particular the two systems both hold for at least one certain Ki. Therefore, if we project the coefficients of
Pi’s to the Ki summand, then we obtain a polynomial map Kn

i → Kn
i that is injective and not surjective,

guaranteed by these two systems of equalities. However, Ki is a finite field, while a contradiction.
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